Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 42(10): 113125, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37733589

RESUMEN

Chronic pain is a complex experience with multifaceted behavioral manifestations, often leading to pain avoidance at the expense of reward approach. How pain facilitates avoidance in situations with mixed outcomes is unknown. The anterior cingulate cortex (ACC) plays a key role in pain processing and in value-based decision-making. Distinct ACC inputs inform about the sensory and emotional quality of pain. However, whether specific ACC circuits underlie pathological conflict assessment in pain remains underexplored. Here, we demonstrate that mice with chronic pain favor cold avoidance rather than reward approach in a conflicting task. This occurs along with selective strengthening of basolateral amygdala inputs onto ACC layer 2/3 pyramidal neurons. The amygdala-cingulate projection is necessary and sufficient for the conflicting cold avoidance. Further, low-frequency stimulation of this pathway restores AMPA receptor function and reduces avoidance in pain mice. Our findings provide insights into the circuits and mechanisms underlying cognitive aspects of pain and offer potential targets for treatment.


Asunto(s)
Complejo Nuclear Basolateral , Dolor Crónico , Ratones , Animales , Giro del Cíngulo/metabolismo , Amígdala del Cerebelo/fisiología , Emociones
2.
J Neurosci ; 42(11): 2166-2179, 2022 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-35078926

RESUMEN

Malfunctioning synaptic plasticity is one of the major mechanisms contributing to the development of chronic pain. We studied spike-timing dependent depression (tLTD) in the anterior cingulate cortex (ACC) of male mice, a brain region involved in processing emotional aspects of pain. tLTD onto layer 5 pyramidal neurons depended on postsynaptic calcium-influx through GluN2B-containing NMDARs and retrograde signaling via nitric oxide to reduce presynaptic release probability. After chronic constriction injury of the sciatic nerve, a model for neuropathic pain, tLTD was rapidly impaired; and this phenotype persisted even beyond the time of recovery from mechanical sensitization. Exclusion of GluN2B-containing NMDARs from the postsynaptic site specifically at projections from the anterior thalamus to the ACC caused the tLTD phenotype, whereas signaling downstream of nitric oxide synthesis remained intact. Thus, transient neuropathic pain can leave a permanent trace manifested in the disturbance of synaptic plasticity in a specific afferent pathway to the cortex.SIGNIFICANCE STATEMENT Synaptic plasticity is one of the main mechanisms that contributes to the development of chronic pain. Most studies have focused on potentiation of excitatory synaptic transmission, but very little is known about the reduction in synaptic strength. We have focused on the ACC, a brain region associated with the processing of emotional and affective components of pain. We studied spike-timing dependent LTD, which is a biologically plausible form of synaptic plasticity, that depends on the relative timing of presynaptic and postsynaptic activity. We found a long-lasting and pathway-specific suppression of the induction mechanism for spike-timing dependent LTD from the anterior thalamus to the ACC, suggesting that this pathology might be involved in altered emotional processing in pain.


Asunto(s)
Dolor Crónico , Neuralgia , Animales , Dolor Crónico/metabolismo , Depresión , Giro del Cíngulo/fisiología , Masculino , Ratones , Neuralgia/metabolismo , Plasticidad Neuronal , Óxido Nítrico/metabolismo
3.
Nat Neurosci ; 22(7): 1053-1056, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31209376

RESUMEN

The lateral habenula encodes aversive stimuli contributing to negative emotional states during drug withdrawal. Here we report that morphine withdrawal in mice leads to microglia adaptations and diminishes glutamatergic transmission onto raphe-projecting lateral habenula neurons. Chemogenetic inhibition of this circuit promotes morphine withdrawal-like social deficits. Morphine withdrawal-driven synaptic plasticity and reduced sociability require tumor necrosis factor-α (TNF-α) release and neuronal TNF receptor 1 activation. Hence, habenular cytokines control synaptic and behavioral adaptations during drug withdrawal.


Asunto(s)
Citocinas/fisiología , Habénula/fisiología , Morfina/efectos adversos , Conducta Social , Síndrome de Abstinencia a Sustancias/fisiopatología , Transmisión Sináptica/fisiología , Adaptación Psicológica , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/fisiología , Naloxona/toxicidad , Plasticidad Neuronal , Distribución Aleatoria , Receptores de Glutamato/análisis , Receptores de N-Metil-D-Aspartato/análisis , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Receptores Tipo I de Factores de Necrosis Tumoral/fisiología , Síndrome de Abstinencia a Sustancias/psicología , Factor de Necrosis Tumoral alfa/fisiología
4.
Nat Commun ; 8(1): 1135, 2017 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-29074844

RESUMEN

Early-life stress, including maternal separation (MS), increases the vulnerability to develop mood disorders later in life, but the underlying mechanisms remain elusive. We report that MS promotes depressive-like symptoms in mice at a mature stage of life. Along with this behavioral phenotype, MS drives reduction of GABAB-GIRK signaling and the subsequent lateral habenula (LHb) hyperexcitability-an anatomical substrate devoted to aversive encoding. Attenuating LHb hyperactivity using chemogenetic tools and deep-brain stimulation ameliorates MS depressive-like symptoms. This provides insights on mechanisms and strategies to alleviate stress-dependent affective behaviors.


Asunto(s)
Depresión/fisiopatología , Habénula/fisiopatología , Privación Materna , Estrés Psicológico/fisiopatología , Animales , Animales Recién Nacidos , Estimulación Encefálica Profunda , Depresión/psicología , Depresión/terapia , Femenino , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/fisiología , Masculino , Ratones Endogámicos C57BL , Receptores de GABA-B/fisiología , Transducción de Señal/fisiología , Estrés Psicológico/psicología , Estrés Psicológico/terapia , Transmisión Sináptica/fisiología
6.
Artículo en Inglés | MEDLINE | ID: mdl-27822183

RESUMEN

The lateral habenula (LHb) and the serotonergic system both contribute to motivational states by encoding rewarding and aversive signals. Converging evidence suggests that perturbation of these systems is critical for the pathophysiology of mood disorders. Anatomical and functional studies indicate that the serotonergic system and the LHb are interconnected in a forward-feedback loop. However, how serotonin release modifies the synaptic and cellular properties of LHb neurons and whether this has any behavioral repercussions remain poorly investigated. In this review article, we discuss insights gained from rodents and humans regarding the implications of the serotonin system and the LHb in aversion encoding and related disorders. We then describe the type, properties and pharmacology of serotonergic receptors expressed throughout the LHb. Finally, we discuss physiological data reporting how serotonergic signaling modifies synaptic transmission and neuronal activity within the LHb. Altogether, we combine a mechanistic- and circuit-level knowledge to provide an overview on how the LHb integrates serotonergic signals, a process potentially contributing to LHb-dependent encoding of valenced external stimuli.

7.
Cell Rep ; 16(9): 2298-307, 2016 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-27545888

RESUMEN

Excitatory and inhibitory transmission onto lateral habenula (LHb) neurons is instrumental for the expression of positive and negative motivational states. However, insights into the molecular mechanisms modulating synaptic transmission and the repercussions for neuronal activity within the LHb remain elusive. Here, we report that, in mice, activation of group I metabotropic glutamate receptors triggers long-term depression at excitatory (eLTD) and inhibitory (iLTD) synapses in the LHb. mGluR-eLTD and iLTD rely on mGluR1 and PKC signaling. However, mGluR-dependent adaptations of excitatory and inhibitory synaptic transmission differ in their expression mechanisms. mGluR-eLTD occurs via an endocannabinoid receptor-dependent decrease in glutamate release. Conversely, mGluR-iLTD occurs postsynaptically through PKC-dependent reduction of ß2-containing GABAA-R function. Finally, mGluR-dependent plasticity of excitation or inhibition decides the direction of neuronal firing, providing a synaptic mechanism to bidirectionally control LHb output. We propose mGluR-LTD as a cellular substrate that underlies LHb-dependent encoding of opposing motivational states.


Asunto(s)
Potenciales Postsinápticos Excitadores/fisiología , Habénula/metabolismo , Potenciación a Largo Plazo/fisiología , Depresión Sináptica a Largo Plazo/fisiología , Neuronas/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Sinapsis/fisiología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Endocannabinoides/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Ácido Glutámico/metabolismo , Ácido Glutámico/farmacología , Habénula/citología , Habénula/efectos de los fármacos , Potenciación a Largo Plazo/efectos de los fármacos , Depresión Sináptica a Largo Plazo/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/citología , Neuronas/efectos de los fármacos , Técnicas de Placa-Clamp , Cultivo Primario de Células , Proteína Quinasa C/genética , Proteína Quinasa C/metabolismo , Receptor Cross-Talk/fisiología , Receptores de Cannabinoides/genética , Receptores de Cannabinoides/metabolismo , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Receptores de Glutamato Metabotrópico/genética , Sinapsis/efectos de los fármacos
8.
Cell Rep ; 13(10): 2287-96, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26628379

RESUMEN

The ventral subiculum (vSUB) plays a key role in addiction, and identifying the neuronal circuits and synaptic mechanisms by which vSUB alters the excitability of dopamine neurons is a necessary step to understand the motor changes induced by cocaine. Here, we report that high-frequency stimulation of the vSUB (HFSvSUB) over-activates ventral tegmental area (VTA) dopamine neurons in vivo and triggers long-lasting modifications of synaptic transmission measured ex vivo. This potentiation is caused by NMDA-dependent plastic changes occurring in the bed nucleus of the stria terminalis (BNST). Finally, we report that the modification of the BNST-VTA neural circuits induced by HFSvSUB potentiates locomotor activity induced by a sub-threshold dose of cocaine. Our findings unravel a neuronal circuit encoding behavioral effects of cocaine in rats and highlight the importance of adaptive modifications in the BNST, a structure that influences motivated behavior as well as maladaptive behaviors associated with addiction.


Asunto(s)
Cocaína/farmacología , Inhibidores de Captación de Dopamina/farmacología , Neuronas Dopaminérgicas/efectos de los fármacos , Hipocampo/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Animales , Trastornos Relacionados con Cocaína/fisiopatología , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/fisiología , Estimulación Eléctrica , Hipocampo/fisiología , Inmunohistoquímica , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/fisiología , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley , Transmisión Sináptica/fisiología
10.
Nat Neurosci ; 18(3): 376-8, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25643299

RESUMEN

Addictive substances mediate positive and negative states promoting persistent drug use. However, substrates for aversive effects of drugs remain elusive. We found that, in mouse lateral habenula (LHb) neurons targeting the rostromedial tegmental nucleus, cocaine enhanced glutamatergic transmission, reduced K(+) currents and increased excitability. GluA1 trafficking in LHb was instrumental for these cocaine-evoked modifications and drug-driven aversive behaviors. Altogether, our results suggest that long-lasting adaptations in LHb shape negative symptoms after drug taking.


Asunto(s)
Cocaína/farmacología , Inhibidores de Captación de Dopamina/farmacología , Habénula/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Receptores AMPA/metabolismo , Animales , Condicionamiento Operante/efectos de los fármacos , Condicionamiento Operante/fisiología , Estimulación Eléctrica , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Habénula/citología , Habénula/metabolismo , Suspensión Trasera , Técnicas In Vitro , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Actividad Motora/efectos de los fármacos , Mutación/genética , Técnicas de Placa-Clamp , Receptores AMPA/genética , Natación/psicología , Proteína Fluorescente Roja
11.
Front Hum Neurosci ; 7: 860, 2013 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-24379770

RESUMEN

The lateral habenula (LHb) is emerging as a crucial structure capable of conveying rewarding and aversive information. Recent evidence indicates that a rapid increase in the activity of LHb neurons drives negative states and avoidance. Furthermore, the hyperexcitability of neurons in the LHb, especially those projecting to the midbrain, may represent an important cellular correlate for neuropsychiatric disorders like depression and drug addiction. Despite the recent insights regarding the implications of the LHb in the context of reward and aversion, the exact nature of the synaptic and cellular players regulating LHb neuronal functions remains largely unknown. Here we focus on the synaptic and cellular physiology of LHb neurons. First, we discuss the properties of excitatory transmission and the implications of glutamate receptors for long-term synaptic plasticity; second, we review the features of GABAergic transmission onto LHb neurons; and finally, we describe the contribution that neuromodulators such as dopamine (DA) and serotonin may have for LHb neuronal physiology. We relate these findings to the role that the LHb can play in processing aversive and rewarding stimuli, both in health and disease states.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...