Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cells ; 13(11)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38891089

RESUMEN

Inflammatory bowel disease (IBD) is a chronic gut disorder that also elevates the risk of colorectal cancer (CRC). The global incidence and severity of IBD are rising, yet existing therapies often lead to severe side effects. Curcumin offers potent anti-inflammatory and chemotherapeutic properties. However, its clinical translation is hindered by rapid metabolism, as well as poor water solubility and stability, which limits its bioavailability. To address these challenges, we developed OC-S, a water-soluble and colon-targeted curcumin formulation that protects against colitis in mice. The current study advances OC-S as a dietary supplement by establishing its stability and compatibility with various commercial dietary products. Further, OC-S exhibited specific binding to inflamed colon tissue, potentially aiding in targeted drug retention at the inflammation site in colitis with diarrhea symptoms. We further investigated its efficacy in vivo and in vitro using a murine model of colitis and tumoroids from APCmin mice. OC-S significantly reduced colitis severity and pro-inflammatory cytokine expression compared with curcumin, even at very low doses (5 mg/kg/day). It also demonstrated higher anti-proliferative activity in CRC cells and colon cancer tumoroids vs. curcumin. Overall, this study demonstrated that OC-S effectively targets and retains water-soluble curcumin at the inflamed colon sites, while showing promise in addressing both colitis and colorectal cancer, which potentially paves the way for OC-S to advance into clinical development as a dietary product for both IBD and CRC.


Asunto(s)
Colitis , Neoplasias Colorrectales , Curcumina , Animales , Curcumina/farmacología , Curcumina/uso terapéutico , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/tratamiento farmacológico , Colitis/tratamiento farmacológico , Colitis/patología , Colitis/inducido químicamente , Ratones , Humanos , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Proliferación Celular/efectos de los fármacos , Suplementos Dietéticos , Masculino , Sustancias Protectoras/farmacología
2.
Mol Pharm ; 18(6): 2233-2241, 2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-34010002

RESUMEN

Eliciting a robust immune response at mucosal sites is critical in preventing the entry of mucosal pathogens such as influenza and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This task is challenging to achieve without the inclusion of a strong and safe mucosal adjuvant. Previously, inulin acetate (InAc), a plant-based polymer, is shown to activate toll-like receptor-4 (TLR4) and elicit a robust systemic immune response as a vaccine adjuvant. This study investigates the potential of nanoparticles prepared with InAc (InAc-NPs) as an intranasal vaccine delivery system to generate both mucosal and systemic immune responses. InAc-NPs (∼250 nm in diameter) activated wild-type (WT) macrophages but failed to activate macrophages from TLR4 knockout mice or WT macrophages when pretreated with a TLR4 antagonist (lipopolysaccharide-RS (LPS-RS)), which indicates the selective nature of a InAc-based nanodelivery system as a TLR4 agonist. Intranasal immunization using antigen-loaded InAc-NPs generated ∼65-fold and 19-fold higher serum IgG1 and IgG2a titers against the antigen, respectively, as compared to PLGA-NPs as a delivery system. InAc-NPs have also stimulated the secretion of sIgA at various mucosal sites, including nasal-associated lymphoid tissues (NALTs), lungs, and intestine, and produced a strong memory response indicative of both humoral and cellular immune activation. Overall, by stimulating both systemic and mucosal immunity, InAc-NPs laid a basis for a potential intranasal delivery system for mucosal vaccination.


Asunto(s)
Adyuvantes Inmunológicos/farmacología , Vacunas contra la COVID-19/administración & dosificación , COVID-19/prevención & control , Portadores de Fármacos/farmacología , Inulina/farmacología , Adyuvantes Inmunológicos/química , Administración Intranasal , Animales , COVID-19/inmunología , COVID-19/virología , Vacunas contra la COVID-19/inmunología , Células Cultivadas , Portadores de Fármacos/química , Evaluación Preclínica de Medicamentos , Humanos , Inmunidad Mucosa/efectos de los fármacos , Inmunidad Mucosa/inmunología , Inmunogenicidad Vacunal , Inulina/química , Inulina/inmunología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Masculino , Ratones , Ratones Noqueados , Nanopartículas/química , Cultivo Primario de Células , SARS-CoV-2/inmunología , Receptor Toll-Like 4/agonistas , Receptor Toll-Like 4/genética
3.
Mol Med Rep ; 21(1): 20-34, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31746356

RESUMEN

Although compelling evidence exists on the ability of aspirin to treat colorectal cancer (CRC), and numerous theories and targets have been proposed, a consensus has not been reached regarding its mechanism of action. In this regard, a relatively unexplored area is the role played by aspirin metabolites 2,3­dihydroxybenzoic acid (2,3­DHBA) and 2,5­dihydroxybenzoic acid (2,5­DHBA) in its chemopreventive actions. In a previous study, we demonstrated that 2,3­DHBA and 2,5­DHBA inhibited CDK1 enzyme activity in vitro. The aim of the present study was to understand the effect of these metabolites on the enzyme activity of all CDKs involved in cell cycle regulation (CDKs 1, 2, 4 and 6) as well as their effect on clonal formation in three different cancer cell lines. Additionally, in silico studies were performed to determine the potential sites of interactions of 2,3­DHBA and 2,5­DHBA with CDKs. We demonstrated that 2,3­DHBA and 2,5­DHBA inhibits CDK­1 enzyme activity beginning at 500 µM, while CDK2 and CDK4 activity was inhibited only at higher concentrations (>750 µM). 2,3­DHBA inhibited CDK6 enzyme activity from 250 µM, while 2,5­DHBA inhibited its activity >750 µM. Colony formation assays showed that 2,5­DHBA was highly effective in inhibiting clonal formation in HCT­116 and HT­29 CRC cell lines (250­500 µM), and in the MDA­MB­231 breast cancer cell line (~100 µM). In contrast 2,3­DHBA was effective only in MDA­MB­231 cells (~500 µM). Both aspirin and salicylic acid failed to inhibit all four CDKs and colony formation. Based on the present results, it is suggested that 2,3­DHBA and 2,5­DHBA may contribute to the chemopreventive properties of aspirin, possibly through the inhibition of CDKs. The present data and the proposed mechanisms should open new areas for future investigations.


Asunto(s)
Aspirina , Ciclo Celular/efectos de los fármacos , Neoplasias Colorrectales , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Proteínas de Neoplasias/antagonistas & inhibidores , Aspirina/farmacocinética , Aspirina/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/enzimología , Neoplasias Colorrectales/patología , Quinasas Ciclina-Dependientes/metabolismo , Células HCT116 , Células HT29 , Humanos , Proteínas de Neoplasias/metabolismo
4.
Cancers (Basel) ; 11(3)2019 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-30917530

RESUMEN

Flavonoids have emerged as promising compounds capable of preventing colorectal cancer (CRC) due to their anti-oxidant and anti-inflammatory properties. It is hypothesized that the metabolites of flavonoids are primarily responsible for the observed anti-cancer effects owing to the unstable nature of the parent compounds and their degradation by colonic microflora. In this study, we investigated the ability of one metabolite, 2,4,6-trihydroxybenzoic acid (2,4,6-THBA) to inhibit Cyclin Dependent Kinase (CDK) activity and cancer cell proliferation. Using in vitro kinase assays, we demonstrated that 2,4,6-THBA dose-dependently inhibited CDKs 1, 2 and 4 and in silico studies identified key amino acids involved in these interactions. Interestingly, no significant CDK inhibition was observed with the structurally related compounds 3,4,5-trihydroxybenzoic acid (3,4,5-THBA) and phloroglucinol, suggesting that orientation of the functional groups and specific amino acid interactions may play a role in inhibition. We showed that cellular uptake of 2,4,6-THBA required the expression of functional SLC5A8, a monocarboxylic acid transporter. Consistent with this, in cells expressing functional SLC5A8, 2,4,6-THBA induced CDK inhibitory proteins p21Cip1 and p27Kip1 and inhibited cell proliferation. These findings, for the first time, suggest that the flavonoid metabolite 2,4,6-THBA may mediate its effects through a CDK- and SLC5A8-dependent pathway contributing to the prevention of CRC.

5.
J Control Release ; 290: 165-179, 2018 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-30142410

RESUMEN

Inflammatory Bowel Diseases (IBD) is a debilitating condition that affects ~70,000 new people every year and has been described as "an expensive disease with no known cure". In addition, IBD increases the risk of developing colon cancer. The current therapeutics for IBD focus on the established disease where the immune dysfunction and bowel damage have already occurred but do not prevent or delay the progression. The current work describes a polymer-based anti-inflammatory technology (Ora-Curcumin-S) specifically targeted to the luminal side of the colon for preventing and/or treating IBD. Ora-Curcumin-S was prepared by molecular complexation of curcumin with a hydrophilic polymer Eudragit® S100 using co-precipitation method. Curcumin interacted with the polymer non-covalently and existed in an amorphous state as demonstrated by various physicochemical techniques. Ora-Curcumin-S is a polymer-drug complex, which is different than solid dispersions in that the interactions are retained even after dissolving in aqueous buffers. Ora-Curcumin-S was >1000 times water soluble than curcumin and importantly, the enhanced solubility was pH-dependent, which was observed only at pHs above 6.8. In addition, around 90% of Ora-Curcumin-S was stable in phosphate buffer, pH 7.4 and simulated intestinal fluid after 24 h, in contrast to 10-20% unformulated curcumin. Ora-Curcumin-S inhibited Monophosphoryl Lipid-A and E. coli induced inflammatory responses in dendritic cells and cells over expressing Toll-Like Receptor-4 (TLR-4) suggesting that Ora-Curcumin-S is a novel polymer-based TLR-4 antagonist. Preliminary pharmacokinetics in mice showed targeted delivery of soluble curcumin to the colon lumen without exposing to the systemic circulation. Furthermore, Ora-Curcumin-S significantly prevented colitis and associated injury in a mouse model of ulcerative colitis estimated using multiple preclinical parameters: colonoscopy pictures, body weight, colon length, colon edema, spleen weight, pro-inflammatory signaling and independent pathological scoring. Overall, the outcome of this innovative proof-of-concept study provides an exciting and locally-targeted pathway for a dietary therapeutic option for IBD patients to help limit colonic inflammation and thus susceptibility to colitis-associated colorectal cancer.


Asunto(s)
Antiinflamatorios/administración & dosificación , Colitis/tratamiento farmacológico , Curcumina/administración & dosificación , Ácidos Polimetacrílicos/administración & dosificación , Animales , Antiinflamatorios/farmacocinética , Línea Celular , Curcumina/farmacocinética , Composición de Medicamentos , Heces/química , Humanos , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ácidos Polimetacrílicos/farmacocinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...