Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Acta Neuropathol Commun ; 11(1): 176, 2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37932833

RESUMEN

As the progression of low-grade diffuse astrocytomas into grade 4 tumors significantly impacts patient prognosis, a better understanding of this process is of paramount importance for improved patient care. In this project, we analyzed matched IDH-mutant astrocytomas before and after progression to grade 4 from six patients (discovery cohort) with genome-wide sequencing, 21 additional patients with targeted sequencing, and 33 patients from Glioma Longitudinal AnalySiS cohort for validation. The Cancer Genome Atlas data from 595 diffuse gliomas provided supportive information. All patients in our discovery cohort received radiation, all but one underwent chemotherapy, and no patient received temozolomide (TMZ) before progression to grade 4 disease. One case in the discovery cohort exhibited a hypermutation signature associated with the inactivation of the MSH2 and DNMT3A genes. In other patients, the number of chromosomal rearrangements and deletions increased in grade 4 tumors. The cell cycle checkpoint gene CDKN2A, or less frequently RB1, was most commonly inactivated after receiving both chemo- and radiotherapy when compared to other treatment groups. Concomitant activating PDGFRA/MET alterations were detected in tumors that acquired a homozygous CDKN2A deletion. NRG3 gene was significantly downregulated and recurrently altered in progressed tumors. Its decreased expression was associated with poorer overall survival in both univariate and multivariate analysis. We also detected progression-related alterations in RAD51B and other DNA repair pathway genes associated with the promotion of error-prone DNA repair, potentially facilitating tumor progression. In our retrospective analysis of patient treatment and survival timelines (n = 75), the combination of postoperative radiation and chemotherapy (mainly TMZ) outperformed radiation, especially in the grade 3 tumor cohort, in which it was typically given after primary surgery. Our results provide further insight into the contribution of treatment and genetic alterations in cell cycle, growth factor signaling, and DNA repair-related genes to tumor evolution and progression.


Asunto(s)
Astrocitoma , Neoplasias Encefálicas , Glioma , Humanos , Neoplasias Encefálicas/genética , Estudios Retrospectivos , Glioma/genética , Astrocitoma/genética , Mutación , Temozolomida/uso terapéutico , Genómica , Isocitrato Deshidrogenasa/genética
2.
Sci Data ; 10(1): 562, 2023 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-37620357

RESUMEN

The analysis of FFPE tissue sections stained with haematoxylin and eosin (H&E) or immunohistochemistry (IHC) is essential for the pathologic assessment of surgically resected breast cancer specimens. IHC staining has been broadly adopted into diagnostic guidelines and routine workflows to assess the status of several established biomarkers, including ER, PGR, HER2 and KI67. Biomarker assessment can also be facilitated by computational pathology image analysis methods, which have made numerous substantial advances recently, often based on publicly available whole slide image (WSI) data sets. However, the field is still considerably limited by the sparsity of public data sets. In particular, there are no large, high quality publicly available data sets with WSIs of matching IHC and H&E-stained tissue sections from the same tumour. Here, we publish the currently largest publicly available data set of WSIs of tissue sections from surgical resection specimens from female primary breast cancer patients with matched WSIs of corresponding H&E and IHC-stained tissue, consisting of 4,212 WSIs from 1,153 patients.


Asunto(s)
Neoplasias de la Mama , Femenino , Humanos , Mama , Neoplasias de la Mama/diagnóstico , Colorantes , Eosina Amarillenta-(YS) , Hematoxilina , Coloración y Etiquetado
3.
Histopathology ; 82(6): 837-845, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36645163

RESUMEN

AIMS: There is strong evidence that cribriform morphology indicates a worse prognosis of prostatic adenocarcinoma. Our aim was to investigate its interobserver reproducibility in prostate needle biopsies. METHODS AND RESULTS: A panel of nine prostate pathology experts from five continents independently reviewed 304 digitised biopsies for cribriform cancer according to recent International Society of Urological Pathology criteria. The biopsies were collected from a series of 702 biopsies that were reviewed by one of the panellists for enrichment of high-grade cancer and potentially cribriform structures. A 2/3 consensus diagnosis of cribriform and noncribriform cancer was reached in 90% (272/304) of the biopsies with a mean kappa value of 0.56 (95% confidence interval 0.52-0.61). The prevalence of consensus cribriform cancers was estimated to 4%, 12%, 21%, and 20% of Gleason scores 7 (3 + 4), 7 (4 + 3), 8, and 9-10, respectively. More than two cribriform structures per level or a largest cribriform mass with ≥9 lumina or a diameter of ≥0.5 mm predicted a consensus diagnosis of cribriform cancer in 88% (70/80), 84% (87/103), and 90% (56/62), respectively, and noncribriform cancer in 3% (2/80), 5% (5/103), and 2% (1/62), respectively (all P < 0.01). CONCLUSION: Cribriform prostate cancer was seen in a minority of needle biopsies with high-grade cancer. Stringent diagnostic criteria enabled the identification of cribriform patterns and the generation of a large set of consensus cases for standardisation.


Asunto(s)
Adenocarcinoma , Neoplasias de la Próstata , Masculino , Humanos , Próstata/patología , Reproducibilidad de los Resultados , Biopsia con Aguja , Adenocarcinoma/diagnóstico , Adenocarcinoma/patología , Biopsia , Neoplasias de la Próstata/diagnóstico , Neoplasias de la Próstata/patología , Clasificación del Tumor
4.
Heliyon ; 8(1): e08762, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35128089

RESUMEN

Histological changes in tissue are of primary importance in pathological research and diagnosis. Automated histological analysis requires ability to computationally separate pathological alterations from normal tissue. Conventional histopathological assessments are performed from individual tissue sections, leading to the loss of three-dimensional context of the tissue. Yet, the tissue context and spatial determinants are critical in several pathologies, such as in understanding growth patterns of cancer in its local environment. Here, we develop computational methods for visualization and quantitative assessment of histopathological alterations in three dimensions. First, we reconstruct the 3D representation of the whole organ from serial sectioned tissue. Then, we proceed to analyze the histological characteristics and regions of interest in 3D. As our example cases, we use whole slide images representing hematoxylin-eosin stained whole mouse prostates in a Pten+/- mouse prostate tumor model. We show that quantitative assessment of tumor sizes, shapes, and separation between spatial locations within the organ enable characterizing and grouping tumors. Further, we show that 3D visualization of tissue with computationally quantified features provides an intuitive way to observe tissue pathology. Our results underline the heterogeneity in composition and cellular organization within individual tumors. As an example, we show how prostate tumors have nuclear density gradients indicating areas of tumor growth directions and reflecting varying pressure from the surrounding tissue. The methods presented here are applicable to any tissue and different types of pathologies. This work provides a proof-of-principle for gaining a comprehensive view from histology by studying it quantitatively in 3D.

5.
Nat Med ; 28(1): 154-163, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35027755

RESUMEN

Artificial intelligence (AI) has shown promise for diagnosing prostate cancer in biopsies. However, results have been limited to individual studies, lacking validation in multinational settings. Competitions have been shown to be accelerators for medical imaging innovations, but their impact is hindered by lack of reproducibility and independent validation. With this in mind, we organized the PANDA challenge-the largest histopathology competition to date, joined by 1,290 developers-to catalyze development of reproducible AI algorithms for Gleason grading using 10,616 digitized prostate biopsies. We validated that a diverse set of submitted algorithms reached pathologist-level performance on independent cross-continental cohorts, fully blinded to the algorithm developers. On United States and European external validation sets, the algorithms achieved agreements of 0.862 (quadratically weighted κ, 95% confidence interval (CI), 0.840-0.884) and 0.868 (95% CI, 0.835-0.900) with expert uropathologists. Successful generalization across different patient populations, laboratories and reference standards, achieved by a variety of algorithmic approaches, warrants evaluating AI-based Gleason grading in prospective clinical trials.


Asunto(s)
Clasificación del Tumor , Neoplasias de la Próstata/patología , Algoritmos , Biopsia , Estudios de Cohortes , Humanos , Masculino , Neoplasias de la Próstata/diagnóstico , Reproducibilidad de los Resultados
6.
BMC Cancer ; 21(1): 1133, 2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34686173

RESUMEN

BACKGROUND: Virtual reality (VR) enables data visualization in an immersive and engaging manner, and it can be used for creating ways to explore scientific data. Here, we use VR for visualization of 3D histology data, creating a novel interface for digital pathology to aid cancer research. METHODS: Our contribution includes 3D modeling of a whole organ and embedded objects of interest, fusing the models with associated quantitative features and full resolution serial section patches, and implementing the virtual reality application. Our VR application is multi-scale in nature, covering two object levels representing different ranges of detail, namely organ level and sub-organ level. In addition, the application includes several data layers, including the measured histology image layer and multiple representations of quantitative features computed from the histology. RESULTS: In our interactive VR application, the user can set visualization properties, select different samples and features, and interact with various objects, which is not possible in the traditional 2D-image view used in digital pathology. In this work, we used whole mouse prostates (organ level) with prostate cancer tumors (sub-organ objects of interest) as example cases, and included quantitative histological features relevant for tumor biology in the VR model. CONCLUSIONS: Our application enables a novel way for exploration of high-resolution, multidimensional data for biomedical research purposes, and can also be used in teaching and researcher training. Due to automated processing of the histology data, our application can be easily adopted to visualize other organs and pathologies from various origins.


Asunto(s)
Imagenología Tridimensional/métodos , Preservación de Órganos/métodos , Realidad Virtual , Animales , Humanos , Ratones
7.
Cancer Res ; 81(19): 5115-5126, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34341074

RESUMEN

Molecular profiling is central in cancer precision medicine but remains costly and is based on tumor average profiles. Morphologic patterns observable in histopathology sections from tumors are determined by the underlying molecular phenotype and therefore have the potential to be exploited for prediction of molecular phenotypes. We report here the first transcriptome-wide expression-morphology (EMO) analysis in breast cancer, where individual deep convolutional neural networks were optimized and validated for prediction of mRNA expression in 17,695 genes from hematoxylin and eosin-stained whole slide images. Predicted expressions in 9,334 (52.75%) genes were significantly associated with RNA sequencing estimates. We also demonstrated successful prediction of an mRNA-based proliferation score with established clinical value. The results were validated in independent internal and external test datasets. Predicted spatial intratumor variabilities in expression were validated through spatial transcriptomics profiling. These results suggest that EMO provides a cost-efficient and scalable approach to predict both tumor average and intratumor spatial expression from histopathology images. SIGNIFICANCE: Transcriptome-wide expression morphology deep learning analysis enables prediction of mRNA expression and proliferation markers from routine histopathology whole slide images in breast cancer.


Asunto(s)
Biomarcadores de Tumor , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Imagen Molecular , Neoplasias de la Mama/etiología , Biología Computacional/métodos , Bases de Datos Genéticas , Femenino , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Histocitoquímica/métodos , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen Molecular/métodos , Reproducibilidad de los Resultados , Programas Informáticos , Transcriptoma
8.
IEEE Trans Med Imaging ; 39(10): 3042-3052, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32275587

RESUMEN

Automatic Non-rigid Histological Image Registration (ANHIR) challenge was organized to compare the performance of image registration algorithms on several kinds of microscopy histology images in a fair and independent manner. We have assembled 8 datasets, containing 355 images with 18 different stains, resulting in 481 image pairs to be registered. Registration accuracy was evaluated using manually placed landmarks. In total, 256 teams registered for the challenge, 10 submitted the results, and 6 participated in the workshop. Here, we present the results of 7 well-performing methods from the challenge together with 6 well-known existing methods. The best methods used coarse but robust initial alignment, followed by non-rigid registration, used multiresolution, and were carefully tuned for the data at hand. They outperformed off-the-shelf methods, mostly by being more robust. The best methods could successfully register over 98% of all landmarks and their mean landmark registration accuracy (TRE) was 0.44% of the image diagonal. The challenge remains open to submissions and all images are available for download.


Asunto(s)
Algoritmos , Técnicas Histológicas
9.
Nanoscale Res Lett ; 11(1): 169, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27030469

RESUMEN

The aim of this paper is to introduce a new image analysis program "Nanoannotator" particularly developed for analyzing individual nanoparticles in transmission electron microscopy images. This paper describes the usefulness and efficiency of the program when analyzing nanoparticles, and at the same time, we compare it to more conventional nanoparticle analysis techniques. The techniques which we are concentrating here are transmission electron microscopy (TEM) linked with different image analysis methods and X-ray diffraction techniques. The developed program appeared as a good supplement to the field of particle analysis techniques, since the traditional image analysis programs suffer from the inability to separate the individual particles from agglomerates in the TEM images. The program is more efficient, and it offers more detailed morphological information of the particles than the manual technique. However, particle shapes that are very different from spherical proved to be problematic also for the novel program. When compared to X-ray techniques, the main advantage of the small-angle X-ray scattering (SAXS) method is the average data it provides from a very large amount of particles. However, the SAXS method does not provide any data about the shape or appearance of the sample.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA