Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 8(7): eabj8618, 2022 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-35171685

RESUMEN

Platelet deficiency, known as thrombocytopenia, can cause hemorrhage and is treated with platelet transfusions. We developed a system for the production of platelet precursor cells, megakaryocytes, from pluripotent stem cells. These cultures can be maintained for >100 days, implying culture renewal by megakaryocyte progenitors (MKPs). However, it is unclear whether the MKP state in vitro mirrors the state in vivo, and MKPs cannot be purified using conventional surface markers. We performed single-cell RNA sequencing throughout in vitro differentiation and mapped each state to its equivalent in vivo. This enabled the identification of five surface markers that reproducibly purify MKPs, allowing us insight into their transcriptional and epigenetic profiles. Last, we performed culture optimization, increasing MKP production. Together, this study has mapped parallels between the MKP states in vivo and in vitro and allowed the purification of MKPs, accelerating the progress of in vitro-derived transfusion products toward the clinic.


Asunto(s)
Células Madre Pluripotentes Inducidas , Células Madre Pluripotentes , Plaquetas , Diferenciación Celular , Megacariocitos
2.
Int J Mol Sci ; 23(2)2022 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-35054793

RESUMEN

Cardiovascular diseases (CVDs) are a primary cause of deaths worldwide. Thrombotic diseases, specifically stroke and coronary heart diseases, account for around 85% of CVDs-induced deaths. Platelets (small circulating blood cells) are responsible for the prevention of excessive bleeding upon vascular injury, through blood clotting (haemostasis). However, unnecessary activation of platelets under pathological conditions, such as upon the rupture of atherosclerotic plaques, results in thrombus formation (thrombosis), which can cause life threatening conditions such as stroke or heart attack. Therefore, antiplatelet medications are usually prescribed for people who are at a high risk of thrombotic diseases. The currently used antiplatelet drugs are associated with major side effects such as excessive bleeding, and some patients are resistant to these drugs. Therefore, numerous studies have been conducted to develop new antiplatelet agents and notably, to establish the relationship between edible plants, specifically fruits, vegetables and spices, and cardiovascular health. Indeed, healthy and balanced diets have proven to be effective for the prevention of CVDs in diverse settings. A high intake of fruits and vegetables in regular diet is associated with lower risks for stroke and coronary heart diseases because of their plethora of phytochemical constituents. In this review, we discuss the impacts of commonly used selected edible plants (specifically vegetables, fruits and spices) and/or their isolated compounds on the modulation of platelet function, haemostasis and thrombosis.


Asunto(s)
Plaquetas/metabolismo , Plantas Comestibles/química , Animales , Ensayos Clínicos como Asunto , Hongos/química , Humanos , Extractos Vegetales/química , Extractos Vegetales/farmacología , Pruebas de Función Plaquetaria
3.
J Thromb Haemost ; 19(1): 107-120, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33037735

RESUMEN

Essentials An easily detectable readout in megakaryocyte cell lines will enhance inflammatory research in these cells. Here, we report the development and characterization of a novel megakaryocyte NF-κB-reporter cell line (Meg-01R). Multiple inflammatory molecules modulate NF-κB activity in Meg-01R cells. Meg-01R cells respond to small molecule inhibitors such as IMD0354 and C87 that are known to inhibit NF-κB activity upon stimulation with TNFα. ABSTRACT: Background Because of the difficulties in acquiring large numbers of megakaryocytes, the impact of inflammatory responses on these cells and their ability to produce fully functional platelets under various pathological conditions has not been investigated in detail. Objectives The primary objective of this study is to develop and functionally characterize a novel megakaryocyte nuclear factor κB (NF-κB) reporter cell line to determine the effects of various inflammatory molecules on megakaryocytes and their signalling pathways. Methods A Meg-01-NF-κB-GFP-Luc (Meg-01R) cell line was developed by inserting a reporter NF-κB-GFP-Luc cassette into normal Meg-01 cells to produce luciferase following activation of NF-κB to enable easy detection of pro-inflammatory and reparative signalling. Results and conclusions Meg-01 and Meg-01R cells have comparable characteristics, including the expression of both GPIbα and integrin ß3 . Meg-01R cells responded to various inflammatory molecules as measured by NF-κB-dependent bioluminescence. For example, inflammatory molecules such as tumor necrosis factor-α and Pam3CSK4 increased NF-κB activity, whereas an antimicrobial peptide, LL37, reduced its activity. Meg-01R cells were also found to be sensitive to inhibitors (IMD0354 and C87) of inflammatory pathways. Notably, Meg-01R cells were able to respond to lipopolysaccharide (LPS; non-ultrapure), although it was not able to react to ultrapure LPS because of the lack of sufficient TLR4 molecules on their surface. For the first time, we report the development and characterization of a novel megakaryocyte NF-κB reporter cell line (Meg-01R) as a robust tool to study the inflammatory responses/signalling of megakaryocytes upon stimulation with a broad range of inflammatory molecules that can affect NF-κB activity.


Asunto(s)
Línea Celular , Megacariocitos , FN-kappa B , Humanos , Lipopolisacáridos , Megacariocitos/metabolismo , FN-kappa B/metabolismo , Transducción de Señal
4.
Biomolecules ; 10(9)2020 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-32887440

RESUMEN

Platelet-associated complications including thrombosis, thrombocytopenia, and haemorrhage are commonly observed during various inflammatory diseases such as psoriasis. Although several mechanisms that may contribute to the dysfunction of platelets during inflammatory diseases have been reported, knowledge on the primary molecules/mechanisms that underpin platelet-associated complications in such conditions is not fully established. Here, we report the significance of the mouse antimicrobial cathelicidin, mouse cathelicidin-related antimicrobial peptide (mCRAMP) (an orthologue of LL37 in humans), on the modulation of platelet reactivity during psoriasis using Imiquimod-induced psoriasis in mice as an inflammatory disease model for psoriasis vulgaris in humans. The activation of platelets during psoriasis is increased as evidenced by the elevated levels of fibrinogen binding and P-selectin exposure on the surface of platelets, and the level of soluble P-selectin in the plasma of psoriatic mice. The skin and plasma of psoriatic mice displayed increased levels of mCRAMP. Moreover, the plasma of psoriatic mice augmented the activation of platelets obtained from healthy mice. The effect of mCRAMP is partially mediated through formyl peptide receptor 2/3 (Fpr2/3, the orthologue to human FPR2/ALX) in platelets as a significant reduction in their activation was observed when FPR2/ALX-selective inhibitors such as WRW4 or Fpr2/3-deficient mouse platelets were used in these assays. Since the level of antimicrobial cathelicidin is increased in numerous inflammatory diseases such as psoriasis, atherosclerosis, and inflammatory bowel disease, the results of this study point towards a critical role for antimicrobial cathelicidin and FPR2/ALX in the development of platelet-related complications in such diseases.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/farmacología , Plaquetas/efectos de los fármacos , Activación Plaquetaria/efectos de los fármacos , Psoriasis , Animales , Péptidos Catiónicos Antimicrobianos/metabolismo , Plaquetas/metabolismo , Modelos Animales de Enfermedad , Fibrinógeno/metabolismo , Hemostasis/efectos de los fármacos , Imiquimod/toxicidad , Ratones Endogámicos C57BL , Selectina-P/sangre , Psoriasis/sangre , Receptores de Formil Péptido/metabolismo , Piel/metabolismo , Piel/patología , Catelicidinas
5.
Toxins (Basel) ; 12(5)2020 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-32397419

RESUMEN

Snakebite envenomation causes over 140,000 deaths every year, predominantly in developing countries. As a result, it is one of the most lethal neglected tropical diseases. It is associated with incredibly complex pathophysiology due to the vast number of unique toxins/proteins present in the venoms of diverse snake species found worldwide. Here, we report the purification and functional characteristics of a Group I (PI) metalloprotease (CAMP-2) from the venom of the western diamondback rattlesnake, Crotalus atrox. Its sensitivity to matrix metalloprotease inhibitors (batimastat and marimastat) was established using specific in vitro experiments and in silico molecular docking analysis. CAMP-2 shows high sequence homology to atroxase from the venom of Crotalus atrox and exhibits collagenolytic, fibrinogenolytic and mild haemolytic activities. It exerts a mild inhibitory effect on agonist-induced platelet aggregation in the absence of plasma proteins. Its collagenolytic activity is completely inhibited by batimastat and marimastat. Zinc chloride also inhibits the collagenolytic activity of CAMP-2 by around 75% at 50 µM, while it is partially potentiated by calcium chloride. Molecular docking studies have demonstrated that batimastat and marimastat are able to bind strongly to the active site residues of CAMP-2. This study demonstrates the impact of matrix metalloprotease inhibitors in the modulation of a purified, Group I metalloprotease activities in comparison to the whole venom. By improving our understanding of snake venom metalloproteases and their sensitivity to small molecule inhibitors, we can begin to develop novel and improved treatment strategies for snakebites.


Asunto(s)
Antineoplásicos/farmacología , Antivenenos/farmacología , Venenos de Crotálidos/antagonistas & inhibidores , Crotalus/metabolismo , Reposicionamiento de Medicamentos , Ácidos Hidroxámicos/farmacología , Inhibidores de la Metaloproteinasa de la Matriz/farmacología , Metaloproteinasas de la Matriz/metabolismo , Fenilalanina/análogos & derivados , Tiofenos/farmacología , Animales , Antineoplásicos/química , Antivenenos/química , Sitios de Unión , Plaquetas/efectos de los fármacos , Plaquetas/metabolismo , Dominio Catalítico , Colágeno/metabolismo , Venenos de Crotálidos/enzimología , Eritrocitos/efectos de los fármacos , Eritrocitos/metabolismo , Fibrina/metabolismo , Fibrinólisis/efectos de los fármacos , Hemólisis/efectos de los fármacos , Humanos , Ácidos Hidroxámicos/química , Inhibidores de la Metaloproteinasa de la Matriz/química , Metaloproteinasas de la Matriz/química , Simulación del Acoplamiento Molecular , Fenilalanina/química , Fenilalanina/farmacología , Unión Proteica , Conformación Proteica , Relación Estructura-Actividad , Especificidad por Sustrato , Tiofenos/química
6.
Sci Rep ; 9(1): 18258, 2019 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-31796818

RESUMEN

Platelets are small circulating blood cells that play essential roles in the maintenance of haemostasis via blood clotting. However, they also play critical roles in the regulation of innate immune responses. Inflammatory receptors, specifically Toll-like receptor (TLR)-4, have been reported to modify platelet reactivity. A plethora of studies have reported controversial functions of TLR4 in the modulation of platelet function using various chemotypes and preparations of its ligand, lipopolysaccharide (LPS). The method of preparation of LPS may explain these discrepancies however this is not fully understood. Hence, to determine the impact of LPS on platelet activation, we used ultrapure preparations of LPS from Escherichia coli (LPSEC), Salmonella minnesota (LPSSM), and Rhodobacter sphaeroides (LPSRS) and examined their actions under diverse experimental conditions in human platelets. LPSEC did not affect platelet activation markers such as inside-out signalling to integrin αIIbß3 or P-selectin exposure upon agonist-induced activation in platelet-rich plasma or whole blood whereas LPSSM and LPSRS inhibited platelet activation under specific conditions at supraphysiological concentrations. Overall, our data demonstrate that platelet activation is not largely influenced by any of the ultrapure LPS chemotypes used in this study on their own except under certain conditions.


Asunto(s)
Lipopolisacáridos/farmacología , Activación Plaquetaria/efectos de los fármacos , Plaquetas/efectos de los fármacos , Plaquetas/inmunología , Plaquetas/metabolismo , Escherichia coli , Humanos , FN-kappa B/metabolismo , Activación Plaquetaria/inmunología , Agregación Plaquetaria/efectos de los fármacos , Rhodobacter sphaeroides , Salmonella , Receptor Toll-Like 4/metabolismo
7.
Stem Cells Int ; 2019: 3106929, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31687032

RESUMEN

The anti-inflammatory and immunomodulatory properties of human mesenchymal stromal cells (MSCs) are a focus within regenerative medicine. However, 2D cultivation of MSCs for extended periods results in abnormal cell polarity, chromosomal changes, reduction in viability, and altered differentiation potential. As an alternative, various 3D hydrogels have been developed which mimic the endogenous niche of MSCs. Nevertheless, imaging cells embedded within 3D hydrogels often suffers from low signal-to-noise ratios which can be at least partly attributed to the high light absorbance and light scattering of the hydrogels in the visible light spectrum. In this study, human adipose tissue-derived MSCs (ADSCs) are cultivated within an anionic nanofibrillar cellulose (aNFC) hydrogel. It is demonstrated that aNFC forms nanofibres arranged as a porous network with low light absorbance in the visible spectrum. Moreover, it is shown that aNFC is cytocompatible, allowing for MSC proliferation, maintaining cell viability and multilineage differentiation potential. Finally, aNFC is compatible with scanning electron microscopy (SEM) and light microscopy including the application of conventional dyes, fluorescent probes, indirect immunocytochemistry, and calcium imaging. Overall, the results indicate that aNFC represents a promising 3D material for the expansion of MSCs whilst allowing detailed examination of cell morphology and cellular behaviour.

8.
Int J Mol Sci ; 20(12)2019 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-31242657

RESUMEN

Cardiovascular diseases represent a major cause of mortality and morbidity in the world, and specifically, thrombotic conditions such as heart attacks and strokes are caused by unwarranted activation of platelets and subsequent formation of blood clots (thrombi) within the blood vessels during pathological circumstances. Therefore, platelets act as a primary therapeutic target to treat and prevent thrombotic conditions. Current treatments are limited due to intolerance, and they are associated with severe side effects such as bleeding complications. Hence, the development of novel therapeutic strategies for thrombotic diseases is an urgent priority. Flavonoids are naturally occurring plant-derived molecules that exert numerous beneficial effects in humans through modulating the functions of distinct cell types. However, naturally occurring flavonoids suffer from several issues such as poor solubility, lipophilicity, and bioavailability, which hinder their efficacy and potency. Despite these, flavonoids act as versatile templates for the design and synthesis of novel molecules for various therapeutic targets. Indeed, several synthetic flavonoids have recently been developed to improve their stability, bioavailability, and efficacy, including for the modulation of platelet function. Here, we provide insight into the actions of certain natural flavonoids along with the advantages of synthetic flavonoids in the modulation of platelet function, haemostasis, and thrombosis.


Asunto(s)
Plaquetas/efectos de los fármacos , Plaquetas/metabolismo , Flavonoides/farmacología , Flavonoides/uso terapéutico , Trombosis/tratamiento farmacológico , Trombosis/metabolismo , Animales , Disponibilidad Biológica , Productos Biológicos/síntesis química , Productos Biológicos/química , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Coagulación Sanguínea/efectos de los fármacos , Flavonoides/síntesis química , Flavonoides/química , Humanos , Trombosis/sangre , Resultado del Tratamiento
9.
Blood Adv ; 2(21): 2973-2985, 2018 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-30413433

RESUMEN

Platelet-associated complications including thrombosis, thrombocytopenia, and hemorrhage are commonly observed during various inflammatory diseases such as sepsis, inflammatory bowel disease, and psoriasis. Despite the reported evidence on numerous mechanisms/molecules that may contribute to the dysfunction of platelets, the primary mechanisms that underpin platelet-associated complications during inflammatory diseases are not fully established. Here, we report the discovery of formyl peptide receptor 2, FPR2/ALX, in platelets and its primary role in the development of platelet-associated complications via ligation with its ligand, LL37. LL37 acts as a powerful endogenous antimicrobial peptide, but it also regulates innate immune responses. We demonstrate the impact of LL37 in the modulation of platelet reactivity, hemostasis, and thrombosis. LL37 activates a range of platelet functions, enhances thrombus formation, and shortens the tail bleeding time in mice. By utilizing a pharmacological inhibitor and Fpr2/3 (an ortholog of human FPR2/ALX)-deficient mice, the functional dependence of LL37 on FPR2/ALX was determined. Because the level of LL37 is increased in numerous inflammatory diseases, these results point toward a critical role for LL37 and FPR2/ALX in the development of platelet-related complications in such diseases. Hence, a better understanding of the clinical relevance of LL37 and FPR2/ALX in diverse pathophysiological settings will pave the way for the development of improved therapeutic strategies for a range of thromboinflammatory diseases.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/farmacología , Activación Plaquetaria/efectos de los fármacos , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/metabolismo , Sitios de Unión , Plaquetas/citología , Plaquetas/metabolismo , Calcio/metabolismo , AMP Cíclico/metabolismo , Hemostasis/efectos de los fármacos , Humanos , Receptores de Formil Péptido/química , Receptores de Formil Péptido/metabolismo , Receptores de Lipoxina/química , Receptores de Lipoxina/metabolismo , Transducción de Señal/efectos de los fármacos , Trombosis/sangre , Trombosis/etiología , Catelicidinas
10.
Mediators Inflamm ; 2017: 9605894, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29170605

RESUMEN

Platelets are anucleated blood cells that participate in a wide range of physiological and pathological functions. Their major role is mediating haemostasis and thrombosis. In addition to these classic functions, platelets have emerged as important players in the innate immune system. In particular, they interact with leukocytes, secrete pro- and anti-inflammatory factors, and express a wide range of inflammatory receptors including Toll-like receptors (TLRs), for example, Toll-like receptor 4 (TLR4). TLR4, which is the most extensively studied TLR in nucleated cells, recognises lipopolysaccharides (LPS) that are compounds of the outer surface of Gram-negative bacteria. Unlike other TLRs, TLR4 is able to signal through both the MyD88-dependent and MyD88-independent signalling pathways. Notably, despite both pathways culminating in the activation of transcription factors, TLR4 has a prominent functional impact on platelet activity, haemostasis, and thrombosis. In this review, we summarise the current knowledge on TLR4 signalling in platelets, critically discuss its impact on platelet function, and highlight the open questions in this area.


Asunto(s)
Plaquetas/metabolismo , Trombosis/metabolismo , Receptor Toll-Like 4/metabolismo , Animales , Hemostasis/fisiología , Humanos , Transducción de Señal/fisiología
11.
Sci Rep ; 7(1): 5738, 2017 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-28720875

RESUMEN

The constant increase in cardiovascular disease rate coupled with significant drawbacks of existing therapies emphasise the necessity to improve therapeutic strategies. Natural flavonoids exert innumerable pharmacological effects in humans. Here, we demonstrate the effects of chrysin, a natural flavonoid found largely in honey and passionflower on the modulation of platelet function, haemostasis and thrombosis. Chrysin displayed significant inhibitory effects on isolated platelets, however, its activity was substantially reduced under physiological conditions. In order to increase the efficacy of chrysin, a sulfur derivative (thio-chrysin), and ruthenium-complexes (Ru-chrysin and Ru-thio-chrysin) were synthesised and their effects on the modulation of platelet function were evaluated. Indeed, Ru-thio-chrysin displayed a 4-fold greater inhibition of platelet function and thrombus formation in vitro than chrysin under physiologically relevant conditions such as in platelet-rich plasma and whole blood. Notably, Ru-thio-chrysin exhibited similar efficacy to chrysin in the modulation of haemostasis in mice. Increased bioavailability and cell permeability of Ru-thio-chrysin compared to chrysin were found to be the basis for its enhanced activity. Together, these results demonstrate that Ru-thio-coupled natural compounds such as chrysin may serve as promising templates for the development of novel anti-thrombotic agents.


Asunto(s)
Plaquetas/efectos de los fármacos , Fibrinolíticos/farmacología , Flavonoides/farmacología , Hemostasis/efectos de los fármacos , Activación Plaquetaria/efectos de los fármacos , Rutenio/farmacología , Trombosis/prevención & control , Animales , Disponibilidad Biológica , Modelos Animales de Enfermedad , Fibrinolíticos/administración & dosificación , Fibrinolíticos/síntesis química , Fibrinolíticos/farmacocinética , Flavonoides/administración & dosificación , Flavonoides/farmacocinética , Humanos , Ratones , Rutenio/administración & dosificación , Rutenio/farmacocinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...