RESUMEN
Lung type 2 pneumocytes (T2Ps) and alveolar macrophages (AMs) play crucial roles in the synthesis, recycling and catabolism of surfactant material, a lipid/protein fluid essential for respiratory function. The liver X receptors (LXR), LXRα and LXRß, are transcription factors important for lipid metabolism and inflammation. While LXR activation exerts anti-inflammatory actions in lung injury caused by lipopolysaccharide (LPS) and other inflammatory stimuli, the full extent of the endogenous LXR transcriptional activity in pulmonary homeostasis is incompletely understood. Here, using mice lacking LXRα and LXRß as experimental models, we describe how the loss of LXRs causes pulmonary lipidosis, pulmonary congestion, fibrosis and chronic inflammation due to defective de novo synthesis and recycling of surfactant material by T2Ps and defective phagocytosis and degradation of excess surfactant by AMs. LXR-deficient T2Ps display aberrant lamellar bodies and decreased expression of genes encoding for surfactant proteins and enzymes involved in cholesterol, fatty acids, and phospholipid metabolism. Moreover, LXR-deficient lungs accumulate foamy AMs with aberrant expression of cholesterol and phospholipid metabolism genes. Using a house dust mite aeroallergen-induced mouse model of asthma, we show that LXR-deficient mice exhibit a more pronounced airway reactivity to a methacholine challenge and greater pulmonary infiltration, indicating an altered physiology of LXR-deficient lungs. Moreover, pretreatment with LXR agonists ameliorated the airway reactivity in WT mice sensitized to house dust mite extracts, confirming that LXR plays an important role in lung physiology and suggesting that agonist pharmacology could be used to treat inflammatory lung diseases.
Asunto(s)
Homeostasis , Receptores X del Hígado , Macrófagos Alveolares , Neumonía , Surfactantes Pulmonares , Transducción de Señal , Animales , Receptores X del Hígado/metabolismo , Receptores X del Hígado/genética , Surfactantes Pulmonares/metabolismo , Ratones , Neumonía/metabolismo , Neumonía/patología , Macrófagos Alveolares/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Pulmón/metabolismo , Pulmón/patología , Células Epiteliales Alveolares/metabolismo , Asma/metabolismo , Asma/patología , Asma/genética , Colesterol/metabolismo , Metabolismo de los Lípidos , FagocitosisRESUMEN
BACKGROUND: Reprogramming of immunosuppressive tumor-associated macrophages (TAMs) presents an attractive therapeutic strategy in cancer. The aim of this study was to explore the role of macrophage CD5L protein in TAM activity and assess its potential as a therapeutic target. METHODS: Monoclonal antibodies (mAbs) against recombinant CD5L were raised by subcutaneous immunization of BALB/c mice. Peripheral blood monocytes were isolated from healthy donors and stimulated with IFN/LPS, IL4, IL10, and conditioned medium (CM) from different cancer cell lines in the presence of anti-CD5L mAb or controls. Subsequently, phenotypic markers, including CD5L, were quantified by flow cytometry, IF and RT-qPCR. Macrophage CD5L protein expression was studied in 55 human papillary lung adenocarcinoma (PAC) samples by IHC and IF. Anti-CD5L mAb and isotype control were administered intraperitoneally into a syngeneic Lewis Lung Carcinoma mouse model and tumor growth was measured. Tumor microenvironment (TME) changes were determined by flow cytometry, IHC, IF, Luminex, RNAseq and RT-qPCR. FINDINGS: Cancer cell lines CM induced an immunosuppressive phenotype (increase in CD163, CD206, MERTK, VEGF and CD5L) in cultured macrophages. Accordingly, high TAM expression of CD5L in PAC was associated with poor patient outcome (Log-rank (Mantel-Cox) test p = 0.02). We raised a new anti-CD5L mAb that blocked the immunosuppressive phenotype of macrophages in vitro. Its administration in vivo inhibited tumor progression of lung cancer by altering the intratumoral myeloid cell population profile and CD4+ T-cell exhaustion phenotype, thereby significantly modifying the TME and increasing the inflammatory milieu. INTERPRETATION: CD5L protein plays a key function in modulating the activity of macrophages and their interactions within the TME, which supports its role as a therapeutic target in cancer immunotherapy. FUNDING: For a full list of funding bodies, please see the Acknowledgements.
Asunto(s)
Neoplasias Pulmonares , Macrófagos , Animales , Humanos , Ratones , Línea Celular Tumoral , Inmunoterapia , Neoplasias Pulmonares/terapia , Macrófagos/metabolismo , Monocitos , Células Mieloides/patología , Microambiente TumoralRESUMEN
The glucocorticoid receptor (GR) is a ubiquitously expressed transcription factor that controls metabolic and homeostatic processes essential for life. Although numerous crystal structures of the GR ligand-binding domain (GR-LBD) have been reported, the functional oligomeric state of the full-length receptor, which is essential for its transcriptional activity, remains disputed. Here we present five new crystal structures of agonist-bound GR-LBD, along with a thorough analysis of previous structural work. We identify four distinct homodimerization interfaces on the GR-LBD surface, which can associate into 20 topologically different homodimers. Biologically relevant homodimers were identified by studying a battery of GR point mutants including crosslinking assays in solution, quantitative fluorescence microscopy in living cells, and transcriptomic analyses. Our results highlight the relevance of non-canonical dimerization modes for GR, especially of contacts made by loop L1-3 residues such as Tyr545. Our work illustrates the unique flexibility of GR's LBD and suggests different dimeric conformations within cells. In addition, we unveil pathophysiologically relevant quaternary assemblies of the receptor with important implications for glucocorticoid action and drug design.
Asunto(s)
Glucocorticoides , Receptores de Glucocorticoides , Receptores de Glucocorticoides/metabolismo , Ligandos , Unión Proteica , DimerizaciónRESUMEN
Nuclear receptors (NRs) are a superfamily of ligand-activated transcription factors that act as biological sensors and use a combination of mechanisms to modulate positively and negatively gene expression in a spatial and temporal manner. The highly orchestrated biological actions of several NRs influence the proliferation, differentiation, and apoptosis of many different cell types. Synthetic ligands for several NRs have been the focus of extensive drug discovery efforts for cancer intervention. This review summarizes the roles in tumour growth and metastasis of several relevant NR family members, namely androgen receptor (AR), estrogen receptor (ER), glucocorticoid receptor (GR), thyroid hormone receptor (TR), retinoic acid receptors (RARs), retinoid X receptors (RXRs), peroxisome proliferator-activated receptors (PPARs), and liver X receptors (LXRs). These studies are key to develop improved therapeutic agents based on novel modes of action with reduced side effects and overcoming resistance.
Asunto(s)
Hormonas , Lípidos , Neoplasias , Receptores Citoplasmáticos y Nucleares , Animales , HumanosRESUMEN
Liver X receptors (LXR) are transcription factors from the nuclear receptor family that are activated by oxysterols and synthetic high-affinity agonists. In this study, we assessed the antitumor effects of synthetic LXR agonist TO901317 in a murine model of syngeneic Lewis Lung carcinoma. Treatment with TO901317 inhibited tumor growth in wild-type, but not in LXR-deficient mice, indicating that the antitumor effects of the agonist depends on functional LXR activity in host cells. Pharmacologic activation of the LXR pathway reduced the intratumoral abundance of regulatory T cells (Treg) and the expression of the Treg-attracting chemokine Ccl17 by MHCIIhigh tumor-associated macrophages (TAM). Moreover, gene expression profiling indicated a broad negative impact of the LXR agonist on other mechanisms used by TAM for the maintenance of an immunosuppressive environment. In studies exploring the macrophage response to GM-CSF or IL4, activated LXR repressed IRF4 expression, resulting in subsequent downregulation of IRF4-dependent genes including Ccl17. Taken together, this work reveals the combined actions of the LXR pathway in the control of TAM responses that contribute to the antitumoral effects of pharmacologic LXR activation. Moreover, these data provide new insights for the development of novel therapeutic options for the treatment of cancer. SIGNIFICANCE: This study reveals unrecognized roles of LXR in the transcriptional control of the tumor microenvironment and suggests use of a synthetic LXR agonist as a novel therapeutic strategy to stimulate antitumor activity.
Asunto(s)
Benzoatos/farmacología , Bencilaminas/farmacología , Hidrocarburos Fluorados/farmacología , Sulfonamidas/farmacología , Linfocitos T Reguladores/efectos de los fármacos , Microambiente Tumoral/efectos de los fármacos , Macrófagos Asociados a Tumores/efectos de los fármacos , Animales , Células Cultivadas , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Receptores X del Hígado/agonistas , Recuento de Linfocitos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones Transgénicos , Células RAW 264.7 , Linfocitos T Reguladores/patología , Transcriptoma/efectos de los fármacos , Microambiente Tumoral/inmunología , Macrófagos Asociados a Tumores/metabolismo , Macrófagos Asociados a Tumores/patologíaRESUMEN
The potential of nicotinamide (NAM) to prevent atherosclerosis has not yet been examined. This study investigated the effect of NAM supplementation on the development of atherosclerosis in a mouse model of the disease. The development of aortic atherosclerosis was significantly reduced (NAM low dose: 45%; NAM high dose: 55%) in NAM-treated, apolipoprotein (Apo)E-deficient mice challenged with a Western diet for 4 weeks. NAM administration significantly increased (1.8-fold) the plasma concentration of proatherogenic ApoB-containing lipoproteins in NAM high-dose (HD)-treated mice compared with untreated mice. However, isolated ApoB-containing lipoproteins from NAM HD mice were less prone to oxidation than those of untreated mice. This result was consistent with the decreased (1.5-fold) concentration of oxidized low-density lipoproteins in this group. Immunohistochemical staining of aortas from NAM-treated mice showed significantly increased levels of IL-10 (NAM low-dose (LD): 1.3-fold; NAM HD: 1.2-fold), concomitant with a significant decrease in the relative expression of TNFα (NAM LD: -44%; NAM HD: -57%). An improved anti-inflammatory pattern was reproduced in macrophages cultured in the presence of NAM. Thus, dietary NAM supplementation in ApoE-deficient mice prevented the development of atherosclerosis and improved protection against ApoB-containing lipoprotein oxidation and aortic inflammation.
RESUMEN
Liver X receptors (LXRs) are transcription factors from the nuclear receptor family that can be pharmacologically activated by high-affinity agonists. LXR activation exerts a combination of metabolic and anti-inflammatory actions that result in the modulation of immune responses and in the amelioration of inflammatory disorders. In addition, LXR agonists modulate the metabolism of infected cells and limit the infectivity and/or growth of several pathogens. This review gives an overview of the recent advances in understanding the complexity of the mechanisms through which the LXR pathway controls inflammation and host-cell pathogen interaction.
Asunto(s)
Receptores X del Hígado/inmunología , Animales , Interacciones Huésped-Patógeno , Humanos , Infecciones/inmunología , Inflamación/inmunologíaRESUMEN
CD38 is a multifunctional protein widely expressed in cells from the immune system and as a soluble form in biological fluids. CD38 expression is up-regulated by an array of inflammatory mediators, and it is frequently used as a cell activation marker. Studies in animal models indicate that CD38 functional expression confers protection against infection by several bacterial and parasitic pathogens. In addition, infectious complications are associated with anti-CD38 immunotherapy. Although CD38 displays receptor and enzymatic activities that contribute to the establishment of an effective immune response, recent work raises the possibility that CD38 might also enhance the immunosuppressive potential of regulatory leukocytes. This review integrates the current knowledge on the diversity of functions mediated by CD38 in the host defense to infection.
Asunto(s)
ADP-Ribosil Ciclasa 1/metabolismo , Infecciones/inmunología , ADP-Ribosil Ciclasa 1/deficiencia , Animales , Susceptibilidad a Enfermedades , Humanos , Inmunoterapia , Infecciones/patología , Infecciones/terapia , Fagocitosis , FenotipoRESUMEN
Antimicrobial resistance (AMR) is currently one of the most important challenges to the treatment of bacterial infections. A critical issue to combat AMR is to restrict its spread. In several instances, bacterial plasmids are involved in the global spread of AMR. Plasmids belonging to the incompatibility group (Inc)HI are widespread in Enterobacteriaceae and most of them express multiple antibiotic resistance determinants. They play a relevant role in the recent spread of colistin resistance. We present in this report novel findings regarding IncHI plasmid conjugation. Conjugative transfer in liquid medium of an IncHI plasmid requires expression of a plasmid-encoded, large-molecular-mass protein that contains an Ig-like domain. The protein, termed RSP, is encoded by a gene (ORF R0009) that maps in the Tra2 region of the IncHI1 R27 plasmid. The RSP protein is exported outside the cell by using the plasmid-encoded type IV secretion system that is also used for its transmission to new cells. Expression of the protein reduces cell motility and enables plasmid conjugation. Flagella are one of the cellular targets of the RSP protein. The RSP protein is required for a high rate of plasmid transfer in both flagellated and nonflagellated Salmonella cells. This effect suggests that RSP interacts with other cellular structures as well as with flagella. These unidentified interactions must facilitate mating pair formation and, hence, facilitate IncHI plasmid conjugation. Due to its location on the outer surfaces of the bacterial cell, targeting the RSP protein could be a means of controlling IncHI plasmid conjugation in natural environments or of combatting infections caused by AMR enterobacteria that harbor IncHI plasmids.
Asunto(s)
Conjugación Genética/genética , Dominios de Inmunoglobulinas/genética , Factores R/genética , Secuencia de Aminoácidos , Antibacterianos/farmacología , Bacterias/genética , Proteínas Bacterianas/genética , Farmacorresistencia Microbiana/genética , Dominios de Inmunoglobulinas/fisiología , Plásmidos/genética , Salmonella/genéticaRESUMEN
Macrophages are phagocytic cells that actively engulf and kill microorganisms within a specialized phagolysosomal system. Several pathogenic bacteria, however, actively co-opt host mechanisms and escape from microbial digestion to establish intracellular replication within macrophages. This chapter highlights detailed protocols to measure the effects of the LXR pathway on bacterial infection of murine bone marrow-derived macrophages.
Asunto(s)
Infecciones Bacterianas/metabolismo , Receptores X del Hígado/agonistas , Receptores X del Hígado/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Animales , Infecciones Bacterianas/microbiología , Biomarcadores , Citometría de Flujo , Inmunofenotipificación , Ratones , Microscopía Confocal , Receptores Nucleares Huérfanos/agonistas , Receptores Nucleares Huérfanos/metabolismoRESUMEN
Many pathogens, ranging from viruses to multicellular parasites, promote expansion of MDSCs, which are myeloid cells that exhibit immunosuppressive features. The roles of MDSCs in infection depend on the class and virulence mechanisms of the pathogen, the stage of the disease, and the pathology associated with the infection. This work compiles evidence supported by functional assays on the roles of different subsets of MDSCs in acute and chronic infections, including pathogen-associated malignancies, and discusses strategies to modulate MDSC dynamics to benefit the host.
Asunto(s)
Enfermedades Transmisibles/etiología , Enfermedades Transmisibles/metabolismo , Células Supresoras de Origen Mieloide/inmunología , Células Supresoras de Origen Mieloide/metabolismo , Enfermedad Aguda , Animales , Biomarcadores , Enfermedad Crónica , Enfermedades Transmisibles/tratamiento farmacológico , Susceptibilidad a Enfermedades , Interacciones Huésped-Patógeno/inmunología , Humanos , Inmunomodulación , Terapia Molecular Dirigida , Células Supresoras de Origen Mieloide/efectos de los fármacosRESUMEN
Metal limitation is a common situation during infection and can have profound effects on the pathogen's success. In this report, we examine the role of zinc limitation in the expression of a virulence factor in uropathogenic Escherichia coli. The pyelonephritis isolate J96 carries two hlyCABD operons that encode the RTX toxin α-hemolysin. While the coding regions of both operons are largely conserved, the upstream sequences, including the promoters, are unrelated. We show here that the two hlyCABD operons are differently regulated. The hly II operon is efficiently silenced in the presence of zinc and highly expressed when zinc is limited. In contrast, the hly I operon does not respond to zinc limitation. Genetic studies reveal that zinc-responsive regulation of the hly II operon is controlled by the Zur metalloregulatory protein. A Zur binding site was identified in the promoter sequence of the hly II operon, and we observe direct binding of Zur to this promoter region. Moreover, we find that Zur regulation of the hly II operon modulates the ability of E. coli J96 to induce a cytotoxic response in host cell lines in culture. Our report constitutes the first description of the involvement of the zinc-sensing protein Zur in directly modulating the expression of a virulence factor in bacteria.
Asunto(s)
Proteínas Hemolisinas/genética , Escherichia coli Uropatógena/genética , Factores de Virulencia/genética , Virulencia/genética , Zinc/metabolismo , Proteínas Bacterianas/genética , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica/genética , Operón/genética , Regiones Promotoras Genéticas/genética , Pielonefritis/genéticaRESUMEN
The liver X receptors (LXRs) are ligand-activated nuclear receptors with established roles in the maintenance of lipid homeostasis in multiple tissues. LXRs exert additional biological functions as negative regulators of inflammation, particularly in macrophages. However, the transcriptional responses controlled by LXRs in other myeloid cells, such as dendritic cells (DCs), are still poorly understood. Here we used gain- and loss-of-function models to characterize the impact of LXR deficiency on DC activation programs. Our results identified an LXR-dependent pathway that is important for DC chemotaxis. LXR-deficient mature DCs are defective in stimulus-induced migration in vitro and in vivo Mechanistically, we show that LXRs facilitate DC chemotactic signaling by regulating the expression of CD38, an ectoenzyme important for leukocyte trafficking. Pharmacological or genetic inactivation of CD38 activity abolished the LXR-dependent induction of DC chemotaxis. Using the low-density lipoprotein receptor-deficient (LDLR-/-) LDLR-/- mouse model of atherosclerosis, we also demonstrated that hematopoietic CD38 expression is important for the accumulation of lipid-laden myeloid cells in lesions, suggesting that CD38 is a key factor in leukocyte migration during atherogenesis. Collectively, our results demonstrate that LXRs are required for the efficient emigration of DCs in response to chemotactic signals during inflammation.
Asunto(s)
Quimiotaxis/fisiología , Células Dendríticas/fisiología , Receptores X del Hígado/fisiología , ADP-Ribosil Ciclasa 1/metabolismo , Animales , Células Cultivadas , Células Dendríticas/citología , Inflamación , Metabolismo de los Lípidos , Receptores X del Hígado/genética , Macrófagos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores Nucleares Huérfanos , Receptores Citoplasmáticos y Nucleares , Transducción de SeñalRESUMEN
SCOPE: Previous studies have proposed that phytosterols activate liver X receptors (LXR) in the intestine, thereby reducing intestinal cholesterol absorption and promoting fecal cholesterol excretion. METHODS AND RESULTS: In the present study, we examined the effects of dietary phytosterol supplementation on intestinal cholesterol absorption and fecal neutral sterol excretion in LXRαß-deficient mice, and wild-type mice treated with synthetic high-affinity LXRαß agonists. LXRαß deficiency led to an induction of intestinal cholesterol absorption and liver cholesterol accumulation. Phytosterol feeding resulted in an approximately 40% reduction of intestinal cholesterol absorption both in wild-type and LXRαß-deficient mice, reduced dietary cholesterol accumulation in liver and promoted the excretion of fecal cholesterol-derived compounds. Furthermore, phytosterols produced additive inhibitory effects on cholesterol absorption in mice treated with LXRαß agonists. CONCLUSIONS: Our data confirm the effect of LXR in regulating intestinal cholesterol absorption and demonstrate that the cholesterol-lowering effects of phytosterols occur in an LXR-independent manner.
Asunto(s)
Colesterol/metabolismo , Absorción Intestinal/efectos de los fármacos , Receptores X del Hígado/fisiología , Fitosteroles/farmacología , Animales , Ratones , Ratones Endogámicos C57BLRESUMEN
Macrophages exert potent effector functions against invading microorganisms but constitute, paradoxically, a preferential niche for many bacterial strains to replicate. Using a model of infection by Salmonella Typhimurium, we have identified a molecular mechanism regulated by the nuclear receptor LXR that limits infection of host macrophages through transcriptional activation of the multifunctional enzyme CD38. LXR agonists reduced the intracellular levels of NAD+ in a CD38-dependent manner, counteracting pathogen-induced changes in macrophage morphology and the distribution of the F-actin cytoskeleton and reducing the capability of non-opsonized Salmonella to infect macrophages. Remarkably, pharmacological treatment with an LXR agonist ameliorated clinical signs associated with Salmonella infection in vivo, and these effects were dependent on CD38 expression in bone-marrow-derived cells. Altogether, this work reveals an unappreciated role for CD38 in bacterial-host cell interaction that can be pharmacologically exploited by activation of the LXR pathway.
Asunto(s)
Receptores X del Hígado/metabolismo , Macrófagos/metabolismo , NAD/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Infecciones por Salmonella/metabolismo , Salmonella typhimurium/patogenicidad , ADP-Ribosil Ciclasa 1/metabolismo , Citoesqueleto de Actina/metabolismo , Animales , Células COS , Línea Celular , Chlorocebus aethiops , Femenino , Masculino , Ratones , Células RAW 264.7RESUMEN
Low levels of high-density lipoprotein cholesterol (HDLc) have been associated with breast cancer risk, but several epidemiologic studies have reported contradictory results with regard to the relationship between apolipoprotein (apo) A-I and breast cancer. We aimed to determine the effects of human apoA-I overexpression and administration of specific apoA-I mimetic peptide (D-4F) on tumour progression by using mammary tumour virus-polyoma middle T-antigen transgenic (PyMT) mice as a model of inherited breast cancer. Expression of human apoA-I in the mice did not affect tumour onset and growth in PyMT transgenic mice, despite an increase in the HDLc level. In contrast, D-4F treatment significantly increased tumour latency and inhibited the development of tumours. The effects of D-4F on tumour development were independent of 27-hydroxycholesterol. However, D-4F treatment reduced the plasma oxidized low-density lipoprotein (oxLDL) levels in mice and prevented oxLDL-mediated proliferative response in human breast adenocarcinoma MCF-7 cells. In conclusion, our study shows that D-4F, but not apoA-I-containing HDL, hinders tumour growth in mice with inherited breast cancer in association with a higher protection against LDL oxidative modification.
Asunto(s)
Antineoplásicos/administración & dosificación , Apolipoproteína A-I/química , Neoplasias de la Mama/tratamiento farmacológico , Péptidos/administración & dosificación , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Neoplasias de la Mama/sangre , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Femenino , Humanos , Lipoproteínas LDL/sangre , Células MCF-7 , Ratones , Ratones Transgénicos , Imitación Molecular , Péptidos/química , Péptidos/farmacología , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
IL-18 is a member of the IL-1 family involved in innate immunity and inflammation. Deregulated levels of IL-18 are involved in the pathogenesis of multiple disorders including inflammatory and metabolic diseases, yet relatively little is known regarding its regulation. Liver X receptors or LXRs are key modulators of macrophage cholesterol homeostasis and immune responses. Here we show that LXR ligands negatively regulate LPS-induced mRNA and protein expression of IL-18 in bone marrow-derived macrophages. Consistent with this being an LXR-mediated process, inhibition is abolished in the presence of a specific LXR antagonist and in LXR-deficient macrophages. Additionally, IL-18 processing of its precursor inactive form to its bioactive state is inhibited by LXR through negative regulation of both pro-caspase 1 expression and activation. Finally, LXR ligands further modulate IL-18 levels by inducing the expression of IL-18BP, a potent endogenous inhibitor of IL-18. This regulation occurs via the transcription factor IRF8, thus identifying IL-18BP as a novel LXR and IRF8 target gene. In conclusion, LXR activation inhibits IL-18 production through regulation of its transcription and maturation into an active pro-inflammatory cytokine. This novel regulation of IL-18 by LXR could be applied to modulate the severity of IL-18 driven metabolic and inflammatory disorders.
Asunto(s)
Interleucina-18/metabolismo , Receptores X del Hígado/metabolismo , Macrófagos/metabolismo , Animales , Células Cultivadas , Perfilación de la Expresión Génica , Lipopolisacáridos/inmunología , Ratones Endogámicos C57BL , ARN Mensajero/análisisRESUMEN
CD5L, a soluble protein belonging to the SRCR superfamily, is expressed mostly by macrophages in lymphoid and inflamed tissues. The expression of this protein is transcriptionally controlled by LXRs, members of the nuclear receptor family that play major roles in lipid homeostasis. Research undertaken over the last decade has uncovered critical roles of CD5L as a PRR of bacterial and fungal components and in the control of key mechanisms in inflammatory responses, with involvement in processes, such as infection, atherosclerosis, and cancer. In this review, we summarize the current knowledge of CD5L, its roles at the intersection between lipid homeostasis and immune response, and its potential use as a diagnostic biomarker in a variety of diseases, such as TB and liver cirrhosis.
Asunto(s)
Aterosclerosis/inmunología , Inmunidad Innata , Cirrosis Hepática/inmunología , Neoplasias/inmunología , Receptores Depuradores de Clase B/inmunología , Tuberculosis Pulmonar/inmunología , Proteínas Reguladoras de la Apoptosis , Aterosclerosis/genética , Aterosclerosis/patología , Regulación de la Expresión Génica , Homeostasis/inmunología , Humanos , Inflamación/genética , Inflamación/inmunología , Inflamación/patología , Metabolismo de los Lípidos/genética , Metabolismo de los Lípidos/inmunología , Cirrosis Hepática/genética , Cirrosis Hepática/patología , Receptores X del Hígado , Neoplasias/genética , Neoplasias/patología , Receptores Nucleares Huérfanos/genética , Receptores Nucleares Huérfanos/inmunología , Isoformas de Proteínas/genética , Isoformas de Proteínas/inmunología , Receptores Depuradores , Receptores Depuradores de Clase B/genética , Transducción de Señal , Tuberculosis Pulmonar/genética , Tuberculosis Pulmonar/microbiología , Tuberculosis Pulmonar/patologíaRESUMEN
Osteoclasts are bone-resorbing cells that are important for maintenance of bone remodeling and mineral homeostasis. Regulation of osteoclast differentiation and activity is important for the pathogenesis and treatment of diseases associated with bone loss. Here, we demonstrate that retinoid X receptors (RXRs) are key elements of the transcriptional program of differentiating osteoclasts. Loss of RXR function in hematopoietic cells resulted in formation of giant, nonresorbing osteoclasts and increased bone mass in male mice and protected female mice from bone loss following ovariectomy, which induces osteoporosis in WT females. The increase in bone mass associated with RXR deficiency was due to lack of expression of the RXR-dependent transcription factor v-maf musculoaponeurotic fibrosarcoma oncogene family, protein B (MAFB) in osteoclast progenitors. Evaluation of osteoclast progenitor cells revealed that RXR homodimers directly target and bind to the Mafb promoter, and this interaction is required for proper osteoclast proliferation, differentiation, and activity. Pharmacological activation of RXRs inhibited osteoclast differentiation due to the formation of RXR/liver X receptor (LXR) heterodimers, which induced expression of sterol regulatory element binding protein-1c (SREBP-1c), resulting in indirect MAFB upregulation. Our study reveals that RXR signaling mediates bone homeostasis and suggests that RXRs have potential as targets for the treatment of bone pathologies such as osteoporosis.
Asunto(s)
Remodelación Ósea/fisiología , Diferenciación Celular/fisiología , Receptores Nucleares Huérfanos/metabolismo , Osteoclastos/metabolismo , Multimerización de Proteína/fisiología , Receptores X Retinoide/metabolismo , Animales , Femenino , Receptores X del Hígado , Factor de Transcripción MafB/biosíntesis , Factor de Transcripción MafB/genética , Masculino , Ratones , Ratones Noqueados , Receptores Nucleares Huérfanos/genética , Osteoclastos/citología , Osteoporosis/genética , Osteoporosis/metabolismo , Receptores X Retinoide/genética , Células Madre/citología , Células Madre/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Transcripción Genética/fisiología , Regulación hacia Arriba/fisiologíaRESUMEN
AIM is expressed by macrophages in response to agonists of the nuclear receptors LXR/RXR. In mice, it acts as an atherogenic factor by protecting macrophages from the apoptotic effects of oxidized lipids. In humans, it is detected in atherosclerotic lesions, but no role related to atherosclerosis has been reported. This study aimed to investigate whether the role of hAIM extends beyond inhibiting oxidized lipid-induced apoptosis. To accomplish this goal, functional analysis with human monocytic THP1 cells and macrophages differentiated from peripheral blood monocytes were performed. It was found that hAIM reduced oxLDL-induced macrophage apoptosis and increased macrophage adhesion to endothelial ICAM-1 by enhancing LFA-1 expression. Furthermore, hAIM increased foam cell formation, as shown by Oil Red O and Nile Red staining, as well as quantification of cholesterol content. This was not a result of decreased reverse cholesterol transport, as hAIM did not affect the efflux significantly from [(3)H] Cholesterol-laden macrophages driven by plasma, apoA-I, or HDL2 acceptors. Rather, flow cytometry studies indicated that hAIM increased macrophage endocytosis of fluorescent oxLDL, which correlated with an increase in the expression of the oxLDLR CD36. Moreover, hAIM bound to oxLDL in ELISA and enhanced the capacity of HEK-293 cells expressing CD36 to endocytose oxLDL, as studied using immunofluorescence microscopy, suggesting that hAIM serves to facilitate CD36-mediated uptake of oxLDL. Our data represent the first evidence that hAIM is involved in macrophage survival, adhesion, and foam cell formation and suggest a significant contribution to atherosclerosis-related mechanisms in the macrophage.