Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Cancer ; 5(8): 1206-1226, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38844817

RESUMEN

Many individuals with cancer are resistant to immunotherapies. Here, we identify the gene encoding the pyrimidine salvage pathway enzyme cytidine deaminase (CDA) among the top upregulated metabolic genes in several immunotherapy-resistant tumors. We show that CDA in cancer cells contributes to the uridine diphosphate (UDP) pool. Extracellular UDP hijacks immunosuppressive tumor-associated macrophages (TAMs) through its receptor P2Y6. Pharmacologic or genetic inhibition of CDA in cancer cells (or P2Y6 in TAMs) disrupts TAM-mediated immunosuppression, promoting cytotoxic T cell entry and susceptibility to anti-programmed cell death protein 1 (anti-PD-1) treatment in resistant pancreatic ductal adenocarcinoma (PDAC) and melanoma models. Conversely, CDA overexpression in CDA-depleted PDACs or anti-PD-1-responsive colorectal tumors or systemic UDP administration (re)establishes resistance. In individuals with PDAC, high CDA levels in cancer cells correlate with increased TAMs, lower cytotoxic T cells and possibly anti-PD-1 resistance. In a pan-cancer single-cell atlas, CDAhigh cancer cells match with T cell cytotoxicity dysfunction and P2RY6high TAMs. Overall, we suggest CDA and P2Y6 as potential targets for cancer immunotherapy.


Asunto(s)
Resistencia a Antineoplásicos , Inmunoterapia , Uridina Difosfato , Humanos , Uridina Difosfato/metabolismo , Inmunoterapia/métodos , Resistencia a Antineoplásicos/inmunología , Animales , Ratones , Carcinoma Ductal Pancreático/inmunología , Carcinoma Ductal Pancreático/terapia , Carcinoma Ductal Pancreático/tratamiento farmacológico , Citidina Desaminasa/metabolismo , Citidina Desaminasa/genética , Macrófagos Asociados a Tumores/inmunología , Macrófagos Asociados a Tumores/metabolismo , Línea Celular Tumoral , Receptores Purinérgicos P2/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Linfocitos T Citotóxicos/inmunología , Linfocitos T Citotóxicos/efectos de los fármacos , Microambiente Tumoral/inmunología , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/tratamiento farmacológico , Nucleótidos/metabolismo , Tolerancia Inmunológica , Receptor de Muerte Celular Programada 1
2.
Cancer Immunol Res ; 10(1): 126-141, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34815265

RESUMEN

Cytotoxic T cell (CTL) infiltration of the tumor carries the potential to limit cancer progression, but their exclusion by the immunosuppressive tumor microenvironment hampers the efficiency of immunotherapy. Here, we show that expression of the axon guidance molecule Plexin-A4 (Plxna4) in CTLs, especially in effector/memory CD8+ T cells, is induced upon T-cell activation, sustained in the circulation, but reduced when entering the tumor bed. Therefore, we deleted Plxna4 and observed that Plxna4-deficient CTLs acquired improved homing capacity to the lymph nodes and to the tumor, as well as increased proliferation, both achieved through enhanced Rac1 activation. Mice with stromal or hematopoietic Plxna4 deletion exhibited enhanced CTL infiltration and impaired tumor growth. In a melanoma model, adoptive transfer of CTLs lacking Plxna4 prolonged survival and improved therapeutic outcome, which was even stronger when combined with anti-programmed cell death protein 1 (PD-1) treatment. PLXNA4 abundance in circulating CTLs was augmented in melanoma patients versus healthy volunteers but decreased after the first cycle of anti-PD-1, alone or in combination with anti-cytotoxic T-Lymphocyte Associated Protein 4 (CTLA-4), in those patients showing complete or partial response to the treatment. Altogether, our data suggest that Plxna4 acts as a "checkpoint," negatively regulating CTL migration and proliferation through cell-autonomous mechanisms independent of the interaction with host-derived Plxna4 ligands, semaphorins. These findings pave the way toward Plxna4-centric immunotherapies and propose Plxna4 detection in circulating CTLs as a potential way to monitor the response to immune checkpoint blockade in patients with metastatic melanoma.


Asunto(s)
Inmunoterapia/métodos , Neoplasias Pulmonares/terapia , Melanoma Experimental/terapia , Proteínas del Tejido Nervioso/farmacología , Linfocitos T Citotóxicos/inmunología , Animales , Linfocitos T CD8-positivos/inmunología , Línea Celular Tumoral , Humanos , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Activación de Linfocitos , Melanoma Experimental/inmunología , Melanoma Experimental/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Receptor de Muerte Celular Programada 1/inmunología , Receptores de Superficie Celular/genética , Microambiente Tumoral/inmunología
3.
Trends Immunol ; 42(5): 401-417, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33867272

RESUMEN

In the direct competition for metabolic resources between cancer cells and tumor-infiltrating CD8+ T cells, the latter are bound to lose out. These effector lymphocytes are therefore rendered exhausted or dysfunctional. Emerging insights into the mechanisms of T cell unresponsiveness in the tumor microenvironment (TME) point towards epigenetic mechanisms as crucial regulatory factors. In this review, we discuss the effects of characteristic components of the TME, i.e. glucose/amino acid dearth with elevated levels of reactive oxygen species (ROS), on DNA methylation and histone modifications in CD8+ T cells. We then take a closer look at the translational potential of epigenetic interventions that aim to improve current immunotherapeutic strategies, including the adoptive transfer of T cell receptor (TCR) or chimeric antigen receptor (CAR) engineered T cells.


Asunto(s)
Linfocitos T CD8-positivos , Receptores Quiméricos de Antígenos , Epigénesis Genética , Receptores de Antígenos de Linfocitos T , Microambiente Tumoral
4.
Front Immunol ; 10: 1613, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31379824

RESUMEN

Chimeric antigen receptor (CAR)-modified T cell therapy is a rapidly emerging immunotherapeutic approach that is revolutionizing cancer treatment. The impressive clinical results obtained with CAR-T cell therapy in patients with acute lymphoblastic leukemia and lymphoma have fueled the development of CAR-T cells targeting other malignancies, including multiple myeloma (MM). The field of CAR-T cell therapy for MM is still in its infancy, but remains promising. To date, most studies have been performed with B cell maturation antigen (BCMA)-targeted CARs, for which high response rates have been obtained in early-phase clinical trials. However, responses are usually temporary, and relapses have frequently been observed. One of the major reasons for relapse is the loss or downregulation of BCMA expression following CAR-T therapy. This has fostered a search for alternative target antigens that are expressed on the MM cell surface. In this review, we provide an overview of myeloma target antigens other than BCMA that are currently being evaluated in pre-clinical and clinical studies.


Asunto(s)
Antígeno de Maduración de Linfocitos B/inmunología , Mieloma Múltiple/inmunología , Receptores Quiméricos de Antígenos/inmunología , Linfocitos T/inmunología , Animales , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Humanos , Inmunoterapia Adoptiva/métodos , Receptores de Antígenos de Linfocitos T/inmunología
5.
Cancers (Basel) ; 11(7)2019 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-31336622

RESUMEN

A particularly interesting marker to identify anti-tumor immune cells is the neural cell adhesion molecule (NCAM), also known as cluster of differentiation (CD)56. Namely, hematopoietic expression of CD56 seems to be confined to powerful effector immune cells. Here, we sought to elucidate its role on various killer immune cells. First, we identified the high motility NCAM-120 molecule to be the main isoform expressed by immune cells. Next, through neutralization of surface CD56, we were able to (1) demonstrate the direct involvement of CD56 in tumor cell lysis exerted by CD56-expressing killer cells, such as natural killer cells, gamma delta (γδ) T cells, and interleukin (IL)-15-cultured dendritic cells (DCs), and (2) reveal a putative crosstalk mechanism between IL-15 DCs and CD8 T cells, suggesting CD56 as a co-stimulatory molecule in their cell-to-cell contact. Moreover, by means of a proximity ligation assay, we visualized the CD56 homophilic interaction among cancer cells and between immune cells and cancer cells. Finally, by blocking the mitogen-activated protein kinase (MAPK) pathway and the phosphoinositide 3-kinase (PI3K)-Akt pathway, we showed that IL-15 stimulation directly led to CD56 upregulation. In conclusion, these results underscore the previously neglected importance of CD56 expression on immune cells, benefiting current and future immune therapeutic options.

6.
J Clin Med ; 8(5)2019 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-31035598

RESUMEN

Acute myeloid leukemia (AML) is a type of blood cancer characterized by the uncontrolled clonal proliferation of myeloid hematopoietic progenitor cells in the bone marrow. The outcome of AML is poor, with five-year overall survival rates of less than 10% for the predominant group of patients older than 65 years. One of the main reasons for this poor outcome is that the majority of AML patients will relapse, even after they have attained complete remission by chemotherapy. Chemotherapy, supplemented with allogeneic hematopoietic stem cell transplantation in patients at high risk of relapse, is still the cornerstone of current AML treatment. Both therapies are, however, associated with significant morbidity and mortality. These observations illustrate the need for more effective and less toxic treatment options, especially in elderly AML and have fostered the development of novel immune-based strategies to treat AML. One of these strategies involves the use of a special type of immune cells, the dendritic cells (DCs). As central orchestrators of the immune system, DCs are key to the induction of anti-leukemia immunity. In this review, we provide an update of the clinical experience that has been obtained so far with this form of immunotherapy in patients with AML.

7.
Vaccines (Basel) ; 6(3)2018 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-30235890

RESUMEN

Dendritic cell (DC) vaccines show promising effects in cancer immunotherapy. However, their efficacy is affected by a number of factors, including (1) the quality of the DC vaccine and (2) tumor immune evasion. The recently characterized BDCA1+CD14+ immunosuppressive cells combine both aspects; their presence in DC vaccines may directly hamper vaccine efficacy, whereas, in patients, BDCA1+CD14+ cells may suppress the induced immune response in an antigen-specific manner systemically and at the tumor site. We hypothesize that BDCA1+CD14+ cells are present in a broad spectrum of cancers and demand further investigation to reveal treatment opportunities and/or improvement for DC vaccines. In this review, we summarize the findings on BDCA1+CD14+ cells in solid cancers. In addition, we evaluate the presence of BDCA1+CD14+ cells in leukemic cancers. Preliminary results suggest that the presence of BDCA1+CD14+ cells correlates with clinical features of acute and chronic myeloid leukemia. Future research focusing on the differentiation from monocytes towards BDCA1+CD14+ cells could reveal more about their cell biology and clinical significance. Targeting these cells in cancer patients may improve the outcome of cancer immunotherapy.

8.
Cytokine Growth Factor Rev ; 41: 54-64, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29773448

RESUMEN

Cytokines of the common gamma-chain receptor family, comprising interleukin (IL)-2, IL-4, IL-7, IL-9, IL-15 and IL-21, are vital with respect to organizing and sustaining healthy immune cell functions. Supporting the anti-cancer immune response, these cytokines inspire great interest for their use as vaccine adjuvants and cancer immunotherapies. It is against this background that gamma delta (γδ) T cells, as special-force soldiers and natural contributors of the tumor immunosurveillance, also received a lot of attention the last decade. As γδ T cell-based cancer trials are coming of age, this present review focusses on the effects of the different cytokines of the common gamma-chain receptor family on γδ T cells with respect to boosting γδ T cells as a therapeutic target in cancer immunotherapy. This review also gathers data that IL-15 in particular exhibits key features for augmenting the anti-tumor activity of effector killer γδ T cells whilst overcoming the myriad of immune escape mechanisms used by cancer cells.


Asunto(s)
Citocinas/inmunología , Linfocitos Intraepiteliales/inmunología , Neoplasias/inmunología , Neoplasias/terapia , Animales , Humanos , Inmunoterapia/métodos
9.
Front Immunol ; 9: 658, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29692776

RESUMEN

Dendritic cell (DC) vaccination can be an effective post-remission therapy for acute myeloid leukemia (AML). Yet, current DC vaccines do not encompass the ideal stimulatory triggers for innate gamma delta (γδ) T cell anti-tumor activity. Promoting type 1 cytotoxic γδ T cells in patients with AML is, however, most interesting, considering these unconventional T cells are primed for rapid function and exert meaningful control over AML. In this work, we demonstrate that interleukin (IL)-15 DCs have the capacity to enhance the anti-tumoral functions of γδ T cells. IL-15 DCs of healthy donors and of AML patients in remission induce the upregulation of cytotoxicity-associated and co-stimulatory molecules on the γδ T cell surface, but not of co-inhibitory molecules, incite γδ T cell proliferation and stimulate their interferon-γ production in the presence of blood cancer cells and phosphoantigens. Moreover, the innate cytotoxic capacity of γδ T cells is significantly enhanced upon interaction with IL-15 DCs, both towards leukemic cell lines and allogeneic primary AML blasts. Finally, we address soluble IL-15 secreted by IL-15 DCs as the main mechanism behind the IL-15 DC-mediated γδ T cell activation. These results indicate that the application of IL-15-secreting DC subsets could render DC-based anti-cancer vaccines more effective through, among others, the involvement of γδ T cells in the anti-leukemic immune response.


Asunto(s)
Células Dendríticas/inmunología , Interleucina-15/inmunología , Linfocitos Intraepiteliales/inmunología , Leucemia Mieloide Aguda/inmunología , Anciano , Anciano de 80 o más Años , Vacunas contra el Cáncer , Células Cultivadas , Técnicas de Cocultivo , Femenino , Humanos , Masculino , Persona de Mediana Edad
10.
Mol Ther ; 26(2): 354-365, 2018 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-29310916

RESUMEN

Gamma delta T (γδT) lymphocytes are primed for rapid function, including cytotoxicity toward cancer cells, and are a component of the immediate stress response. Following activation, they can function as professional antigen-presenting cells. Chimeric antigen receptors (CARs) work by focusing T cell function on defined cell surface tumor antigens and provide essential costimulation for robust activation. Given the natural tropism of γδT cells for the tumor microenvironment, we hypothesized that their transduction with CARs might enhance cytotoxicity while retaining their ability to migrate to tumor and act as antigen-presenting cells to prolong the intratumoral immune response. Using a GD2-targeting CAR as a model system, we showed that γδT cells of both Vδ1 and Vδ2 subsets could be expanded and transduced to sufficient numbers for clinical studies. The CAR added to the cells' innate cytotoxicity by enhancing GD2-specific killing of GD2-expressing cancer cell lines. Migration toward tumor cells in vitro was not impaired by the presence of the CAR. Expanded CAR-transduced Vδ2 cells retained the ability to take up tumor antigens and cross presented the processed peptide to responder alpha beta T (αßT) lymphocytes. γδ CAR-T cell products show promise for evaluation in clinical studies of solid tumors.


Asunto(s)
Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Receptores Quiméricos de Antígenos/metabolismo , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Presentación de Antígeno/inmunología , Células Presentadoras de Antígenos/inmunología , Células Presentadoras de Antígenos/metabolismo , Antígenos de Neoplasias/inmunología , Biomarcadores , Línea Celular Tumoral , Reactividad Cruzada/inmunología , Citotoxicidad Inmunológica/inmunología , Humanos , Inmunoterapia Adoptiva , Activación de Linfocitos/inmunología , Fenotipo , Receptores de Antígenos de Linfocitos T gamma-delta/genética , Receptores Quiméricos de Antígenos/genética
11.
Front Immunol ; 8: 892, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28791027

RESUMEN

Over the past years, the phenotypic and functional boundaries distinguishing the main cell subsets of the immune system have become increasingly blurred. In this respect, CD56 (also known as neural cell adhesion molecule) is a very good example. CD56 is the archetypal phenotypic marker of natural killer cells but can actually be expressed by many more immune cells, including alpha beta T cells, gamma delta T cells, dendritic cells, and monocytes. Common to all these CD56-expressing cell types are strong immunostimulatory effector functions, including T helper 1 cytokine production and an efficient cytotoxic capacity. Interestingly, both numerical and functional deficiencies and phenotypic alterations of the CD56+ immune cell fraction have been reported in patients with various infectious, autoimmune, or malignant diseases. In this review, we will discuss our current knowledge on the expression and function of CD56 in the hematopoietic system, both in health and disease.

12.
Oncotarget ; 8(8): 13652-13665, 2017 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-28099143

RESUMEN

Success of dendritic cell (DC) therapy in treating malignancies is depending on the DC capacity to attract immune effector cells, considering their reciprocal crosstalk is partially regulated by cell-contact-dependent mechanisms. Although critical for therapeutic efficacy, immune cell recruitment is a largely overlooked aspect regarding optimization of DC vaccination. In this paper we have made a head-to-head comparison of interleukin (IL)-15-cultured DCs and conventional IL-4-cultured DCs with regard to their proficiency in the recruitment of (innate) immune effector cells. Here, we demonstrate that IL-4 DCs are suboptimal in attracting effector lymphocytes, while IL15 DCs provide a favorable chemokine milieu for recruiting CD8+ T cells, natural killer (NK) cells and gamma delta (γδ) T cells. Gene expression analysis revealed that IL-15 DCs exhibit a high expression of chemokines involved in antitumor immune effector cell attraction, while IL-4 DCs display a more immunoregulatory profile characterized by the expression of Th2 and regulatory T cell-attracting chemokines. This is confirmed by functional data indicating an enhanced recruitment of granzyme B+ effector lymphocytes by IL-15 DCs, as compared to IL-4 DCs, and subsequent superior killing of tumor cells by the migrated lymphocytes. Elevated CCL4 gene expression in IL-15 DCs and lowered CCR5 expression on both migrated γδ T cells and NK cells, led to validation of increased CCL4 secretion by IL15 DCs. Moreover, neutralization of CCR5 prior to migration resulted in an important inhibition of γδ T cell and NK cell recruitment by IL-15 DCs. These findings further underscore the strong immunotherapeutic potential of IL-15 DCs.


Asunto(s)
Células Dendríticas/inmunología , Inmunoterapia Adoptiva/métodos , Interleucina-15/inmunología , Células Asesinas Naturales/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Movimiento Celular/inmunología , Quimiocinas/genética , Quimiocinas/inmunología , Expresión Génica , Humanos , Receptores de Antígenos de Linfocitos T gamma-delta/inmunología , Proteínas de Transporte Vesicular/inmunología
13.
Oncoimmunology ; 5(10): e1227902, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27853652

RESUMEN

Human blood dendritic cells (DCs) hold great potential for use in anticancer immunotherapies. CD1c+ myeloid DCs and plasmacytoid DCs (pDCs) have been successfully utilized in clinical vaccination trials against melanoma. We hypothesize that combining both DC subsets in a single vaccine can further improve vaccine efficacy. Here, we have determined the potential synergy between the two subsets in vitro on the level of maturation, cytokine expression, and effector cell induction. Toll-like receptor (TLR) stimulation of CD1c+ DCs induced cross-activation of immature pDCs and vice versa. When both subsets were stimulated together using TLR agonists, CD86 expression on pDCs was increased and higher levels of interferon (IFN)-α were produced by DC co-cultures. Although the two subsets did not display any synergistic effect on naive CD4+ and CD8+ T cell polarization, CD1c+ DCs and pDCs were able to complement each other's induction of other immune effector cells. The mere presence of pDCs in DC co-cultures promoted plasma cell differentiation from activated autologous B cells. Similarly, CD1c+ DCs, alone or in co-cultures, induced high levels of IFN-γ from allogeneic peripheral blood lymphocytes or activated autologous natural killer (NK) cells. Both CD1c+ DCs and pDCs could enhance NK cell cytotoxicity, and interestingly DC co-cultures further enhanced NK cell-mediated killing of an NK-resistant tumor cell line. These results indicate that co-application of human blood DC subsets could render DC-based anticancer vaccines more efficacious.

14.
J Hematol Oncol ; 9(1): 101, 2016 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-27686372

RESUMEN

BACKGROUND: Adoptive immunotherapy is gaining momentum to fight malignancies, whereby γδ T cells have received recent attention as an alternative cell source as to natural killer cells and αß T cells. The advent of γδ T cells is largely due to their ability to recognize and target tumor cells using both innate characteristic and T cell receptor (TCR)-mediated mechanisms, their capacity to enhance the generation of antigen-specific T cell responses, and their potential to be used in an autologous or allogeneic setting. METHODS: In this study, we explored the beneficial effect of the immunostimulatory cytokine interleukin (IL)-15 on purified γδ T cells and its use as a stimulatory signal in the ex vivo expansion of γδ T cells for adoptive transfer. The expansion protocol was validated both with immune cells of healthy individuals and acute myeloid leukemia patients. RESULTS: We report that the addition of IL-15 to γδ T cell cultures results in a more activated phenotype, a higher proliferative capacity, a more pronounced T helper 1 polarization, and an increased cytotoxic capacity of γδ T cells. Moreover γδ T cell expansion starting with peripheral blood mononuclear cells from healthy individuals and acute myeloid leukemia patients is boosted in the presence of IL-15, whereby the antitumor properties of the γδ T cells are strengthened as well. CONCLUSIONS: Our results support the rationale to explore the use of IL-15 in clinical adoptive therapy protocols exploiting γδ T cells.

15.
Pharmacol Ther ; 158: 24-40, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26617219

RESUMEN

A growing body of evidence points toward an important anti-cancer effect of bisphosphonates, a group of inexpensive, safe, potent, and long-term stable pharmacologicals that are widely used as osteoporosis drugs. To date, they are already used in the prevention of complications of bone metastases. Because the bisphosphonates can also reduce mortality in among other multiple myeloma, breast, and prostate cancer patients, they are now thoroughly studied in oncology. In particular, the more potent nitrogen-containing bisphosphonates have the potential to improve prognosis. The first part of this review will elaborate on the direct and indirect anti-tumoral effects of bisphosphonates, including induction of tumor cell apoptosis, inhibition of tumor cell adhesion and invasion, anti-angiogenesis, synergism with anti-neoplastic drugs, and enhancement of immune surveillance (e.g., through activation of γδ T cells and targeting macrophages). In the second part, we shed light on the current clinical position of bisphosphonates in the treatment of hematological and solid malignancies, as well as on ongoing and completed clinical trials investigating the therapeutic effect of bisphosphonates in cancer. Based on these recent data, the role of bisphosphonates is expected to further expand in the near future outside the field of osteoporosis and to open up new avenues in the treatment of malignancies.


Asunto(s)
Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Difosfonatos/farmacología , Difosfonatos/uso terapéutico , Neoplasias/tratamiento farmacológico , Animales , Apoptosis/efectos de los fármacos , Adhesión Celular/efectos de los fármacos , Ensayos Clínicos como Asunto , Humanos
16.
Oncoimmunology ; 4(8): e1021538, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26405575

RESUMEN

Gamma delta (γδ) T cells are the all-rounders of our immune-system with their major histocompatibility complex-unrestricted cytotoxicity, capacity to secrete immunosti-mulatory cytokines and ability to promote the generation of tumor antigen-specific CD8+ and CD4+ T cell responses. Dendritic cell (DC)-based vaccine therapy has the prospective to harness these unique features of the γδ T cells in the fight against cancer. In this review, we will discuss our current knowledge on DC-mediated γδ T cell activation and related opportunities for tumor immunologists.

17.
Pharmacol Rev ; 67(4): 731-53, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26240218

RESUMEN

Although the earliest­rudimentary­attempts at exploiting the immune system for cancer therapy can be traced back to the late 18th Century, it was not until the past decade that cancer immunotherapeutics have truly entered mainstream clinical practice. Given their potential to stimulate both adaptive and innate antitumor immune responses, dendritic cells (DCs) have come under intense scrutiny in recent years as pharmacological tools for cancer immunotherapy. Conceptually, the clinical effectiveness of this form of active immunotherapy relies on the completion of three critical steps: 1) the DCs used as immunotherapeutic vehicles must properly activate the antitumor immune effector cells of the host, 2) these immune effector cells must be receptive to stimulation by the DCs and be competent to mediate their antitumor effects, which 3) requires overcoming the various immune-inhibitory mechanisms used by the tumor cells. In this review, following a brief overview of the pivotal milestones in the history of cancer immunotherapy, we will introduce the reader to the basic immunobiological and pharmacological principles of active cancer immunotherapy using DCs. We will then discuss how current research is trying to define the optimal parameters for each of the above steps to realize the full clinical potential of DC therapeutics. Given its high suitability for immune interventions, acute myeloid leukemia was chosen here to showcase the latest research trends driving the field of DC-based cancer immunotherapy.


Asunto(s)
Células Dendríticas/metabolismo , Inmunoterapia Activa/métodos , Neoplasias/inmunología , Neoplasias/terapia , Linfocitos T Citotóxicos/inmunología , Traslado Adoptivo/métodos , Anticuerpos Monoclonales , Antígenos de Neoplasias/inmunología , Apoptosis , Vacunas contra el Cáncer/inmunología , Técnicas de Cultivo de Célula , Citocinas/biosíntesis , Células Dendríticas/inmunología , Relación Dosis-Respuesta a Droga , Vías de Administración de Medicamentos , Humanos , Células Asesinas Naturales/inmunología , Complejo Mayor de Histocompatibilidad/inmunología , Transducción de Señal
18.
PLoS One ; 10(5): e0123340, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25951230

RESUMEN

The contribution of natural killer (NK) cells to the treatment efficacy of dendritic cell (DC)-based cancer vaccines is being increasingly recognized. Much current efforts to optimize this form of immunotherapy are therefore geared towards harnessing the NK cell-stimulatory ability of DCs. In this study, we investigated whether generation of human monocyte-derived DCs with interleukin (IL)-15 followed by activation with a Toll-like receptor stimulus endows these DCs, commonly referred to as "IL-15 DCs", with the capacity to stimulate NK cells. In a head-to-head comparison with "IL-4 DCs" used routinely for clinical studies, IL-15 DCs were found to induce a more activated, cytotoxic effector phenotype in NK cells, in particular in the CD56bright NK cell subset. With the exception of GM-CSF, no significant enhancement of cytokine/chemokine secretion was observed following co-culture of NK cells with IL-15 DCs. IL-15 DCs, but not IL-4 DCs, promoted NK cell tumoricidal activity towards both NK-sensitive and NK-resistant targets. This effect was found to require cell-to-cell contact and to be mediated by DC surface-bound IL-15. This study shows that DCs can express a membrane-bound form of IL-15 through which they enhance NK cell cytotoxic function. The observed lack of membrane-bound IL-15 on "gold-standard" IL-4 DCs and their consequent inability to effectively promote NK cell cytotoxicity may have important implications for the future design of DC-based cancer vaccine studies.


Asunto(s)
Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Interleucina-15/metabolismo , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Antígeno CD56/metabolismo , Comunicación Celular , Línea Celular Tumoral , Técnicas de Cocultivo , Citocinas/metabolismo , Humanos , Inmunoterapia , Activación de Linfocitos
19.
Cancer Immunol Immunother ; 64(7): 831-42, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25863943

RESUMEN

Dendritic cell (DC) vaccination has demonstrated potential in clinical trials as a new effective cancer treatment, but objective and durable clinical responses are confined to a minority of patients. Interferon (IFN)-α, a type-I IFN, can bolster anti-tumor immunity by restoring or increasing the function of DCs, T cells and natural killer (NK) cells. Moreover, type-I IFN signaling on DCs was found to be essential in mice for tumor rejection by the innate and adaptive immune system. Targeted delivery of IFN-α by DCs to immune cells could boost the generation of anti-tumor immunity, while avoiding the side effects frequently associated with systemic administration. Naturally circulating plasmacytoid DCs, major producers of type-I IFN, were already shown capable of inducing tumor antigen-specific T cell responses in cancer patients without severe toxicity, but their limited number complicates their use in cancer vaccination. In the present work, we hypothesized that engineering easily generated human monocyte-derived mature DCs to secrete IFN-α using mRNA electroporation enhances their ability to promote adaptive and innate anti-tumor immunity. Our results show that IFN-α mRNA electroporation of DCs significantly increases the stimulation of tumor antigen-specific cytotoxic T cell as well as anti-tumor NK cell effector functions in vitro through high levels of IFN-α secretion. Altogether, our findings mark IFN-α mRNA-electroporated DCs as potent inducers of both adaptive and innate anti-tumor immunity and pave the way for clinical trial evaluation in cancer patients.


Asunto(s)
Antígenos de Neoplasias/inmunología , Linfocitos T CD8-positivos/inmunología , Células Dendríticas/inmunología , Interferón-alfa/metabolismo , Proteínas WT1/inmunología , Antígenos de Neoplasias/genética , Linfocitos T CD4-Positivos/inmunología , Proliferación Celular/genética , Células Cultivadas , Células Dendríticas/citología , Células Dendríticas/trasplante , Electroporación , Humanos , Inmunoterapia Adoptiva , Interferón-alfa/genética , Células Asesinas Naturales/inmunología , Activación de Linfocitos/inmunología , Neoplasias/inmunología , ARN Mensajero/administración & dosificación , ARN Mensajero/genética , Proteínas WT1/genética
20.
Hum Vaccin Immunother ; 9(9): 1956-61, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23778748

RESUMEN

Owing to their professional antigen-presenting capacity and unique potential to induce tumor antigen-specific T cell immunity, dendritic cells (DCs) have attracted much interest over the past decades for therapeutic vaccination against cancer. Clinical trials have shown that the use of tumor antigen-loaded DCs in cancer patients is safe and that it has the potential to induce anti-tumor immunity which, in some cases, culminates in striking clinical responses. Unfortunately, in a considerable number of patients, DC vaccination is unable to mount effective anti-tumor immune responses and, if it does so, the resultant immunity is often insufficient to translate into tangible clinical benefit. This underscores the necessity to re-design and optimize the current procedures for DC vaccine manufacturing. A new generation of DC vaccines with improved potency has now become available for clinical use as a result of extensive pre-clinical research. One of the promising next-generation DC vaccine candidates are interleukin (IL)-15-differentiated DCs. In this commentary, we will compile the research data that have been obtained by our group and other groups with these so-called IL-15 DCs and summarize the evidence supporting the implementation of IL-15 DCs in DC-based cancer vaccination regimens.


Asunto(s)
Vacunas contra el Cáncer/administración & dosificación , Vacunas contra el Cáncer/inmunología , Células Dendríticas/inmunología , Inmunoterapia/métodos , Interleucina-15/inmunología , Neoplasias/terapia , Descubrimiento de Drogas/tendencias , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...