Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 42(4): 112256, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-36952347

RESUMEN

The Omicron variant of SARS-CoV-2 is not effectively neutralized by most antibodies elicited by two doses of mRNA vaccines, but a third dose increases anti-Omicron neutralizing antibodies. We reveal mechanisms underlying this observation by combining computational modeling with data from vaccinated humans. After the first dose, limited antigen availability in germinal centers (GCs) results in a response dominated by B cells that target immunodominant epitopes that are mutated in an Omicron-like variant. After the second dose, these memory cells expand and differentiate into plasma cells that secrete antibodies that are thus ineffective for such variants. However, these pre-existing antigen-specific antibodies transport antigen efficiently to secondary GCs. They also partially mask immunodominant epitopes. Enhanced antigen availability and epitope masking in secondary GCs together result in generation of memory B cells that target subdominant epitopes that are less mutated in Omicron. The third dose expands these cells and boosts anti-variant neutralizing antibodies.


Asunto(s)
Presentación de Antígeno , COVID-19 , Humanos , Formación de Anticuerpos , Epítopos Inmunodominantes , SARS-CoV-2 , Epítopos , Anticuerpos Neutralizantes , Vacunación , Anticuerpos Antivirales
2.
bioRxiv ; 2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-36052368

RESUMEN

The Omicron variant of SARS-CoV-2 evades neutralization by most serum antibodies elicited by two doses of mRNA vaccines, but a third dose of the same vaccine increases anti-Omicron neutralizing antibodies. By combining computational modeling with data from vaccinated humans we reveal mechanisms underlying this observation. After the first dose, limited antigen availability in germinal centers results in a response dominated by B cells with high germline affinities for immunodominant epitopes that are significantly mutated in an Omicron-like variant. After the second dose, expansion of these memory cells and differentiation into plasma cells shape antibody responses that are thus ineffective for such variants. However, in secondary germinal centers, pre-existing higher affinity antibodies mediate enhanced antigen presentation and they can also partially mask dominant epitopes. These effects generate memory B cells that target subdominant epitopes that are less mutated in Omicron. The third dose expands these cells and boosts anti-variant neutralizing antibodies.

3.
Proc Natl Acad Sci U S A ; 119(37): e2205598119, 2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-36006981

RESUMEN

The humoral immune response, a key arm of adaptive immunity, consists of B cells and their products. Upon infection or vaccination, B cells undergo a Darwinian evolutionary process in germinal centers (GCs), resulting in the production of antibodies and memory B cells. We developed a computational model to study how humoral memory is recalled upon reinfection or booster vaccination. We find that upon reexposure to the same antigen, affinity-dependent selective expansion of available memory B cells outside GCs (extragerminal center compartments [EGCs]) results in a rapid response made up of the best available antibodies. Memory B cells that enter secondary GCs can undergo mutation and selection to generate even more potent responses over time, enabling greater protection upon subsequent exposure to the same antigen. GCs also generate a diverse pool of B cells, some with low antigen affinity. These results are consistent with our analyses of data from humans vaccinated with two doses of a COVID-19 vaccine. Our results further show that the diversity of memory B cells generated in GCs is critically important upon exposure to a variant antigen. Clones drawn from this diverse pool that cross-react with the variant are rapidly expanded in EGCs to provide the best protection possible while new secondary GCs generate a tailored response for the new variant. Based on a simple evolutionary model, we suggest that the complementary roles of EGC and GC processes we describe may have evolved in response to complex organisms being exposed to evolving pathogen families for millennia.


Asunto(s)
Antígenos , Linfocitos B , Inmunidad Humoral , Memoria Inmunológica , Antígenos/inmunología , Linfocitos B/inmunología , COVID-19/prevención & control , Vacunas contra la COVID-19/inmunología , Simulación por Computador , Centro Germinal/inmunología , Humanos , Modelos Biológicos
4.
NPJ Syst Biol Appl ; 6(1): 3, 2020 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-32001720

RESUMEN

Staphylococcus aureus is a metabolically versatile pathogen that colonizes nearly all organs of the human body. A detailed and comprehensive knowledge of staphylococcal metabolism is essential to understand its pathogenesis. To this end, we have reconstructed and experimentally validated an updated and enhanced genome-scale metabolic model of S. aureus USA300_FPR3757. The model combined genome annotation data, reaction stoichiometry, and regulation information from biochemical databases and previous strain-specific models. Reactions in the model were checked and fixed to ensure chemical balance and thermodynamic consistency. To further refine the model, growth assessment of 1920 nonessential mutants from the Nebraska Transposon Mutant Library was performed, and metabolite excretion profiles of important mutants in carbon and nitrogen metabolism were determined. The growth and no-growth inconsistencies between the model predictions and in vivo essentiality data were resolved using extensive manual curation based on optimization-based reconciliation algorithms. Upon intensive curation and refinements, the model contains 863 metabolic genes, 1379 metabolites (including 1159 unique metabolites), and 1545 reactions including transport and exchange reactions. To improve the accuracy and predictability of the model to environmental changes, condition-specific regulation information curated from the existing knowledgebase was incorporated. These critical additions improved the model performance significantly in capturing gene essentiality, substrate utilization, and metabolite production capabilities and increased the ability to generate model-based discoveries of therapeutic significance. Use of this highly curated model will enhance the functional utility of omics data, and therefore, serve as a resource to support future investigations of S. aureus and to augment staphylococcal research worldwide.


Asunto(s)
Biología Computacional/métodos , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Genoma Bacteriano/genética , Genómica/métodos , Humanos , Modelos Biológicos , Infecciones Estafilocócicas/genética
5.
Cell Rep ; 17(1): 221-232, 2016 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-27681433

RESUMEN

Microvascular endothelial cells maintain a tight barrier to prevent passage of plasma and circulating immune cells into the extravascular tissue compartment, yet endothelial cells respond rapidly to vasoactive substances, including thrombin, allowing transient paracellular permeability. This response is a cornerstone of acute inflammation, but the mechanisms responsible are still incompletely understood. Here, we demonstrate that thrombin triggers MALT1 to proteolytically cleave cylindromatosis (CYLD). Fragmentation of CYLD results in microtubule disruption and a cascade of events leading to endothelial cell retraction and an acute permeability response. This finding reveals an unexpected role for the MALT1 protease, which previously has been viewed mostly as a driver of pro-inflammatory NF-κB signaling in lymphocytes. Thus, MALT1 not only promotes immune cell activation but also acutely regulates endothelial cell biology, actions that together facilitate tissue inflammation. Pharmacologic inhibition of MALT1 may therefore have synergistic impact by targeting multiple disparate steps in the overall inflammatory response.


Asunto(s)
Caspasas/inmunología , Cisteína Endopeptidasas/inmunología , Células Endoteliales/efectos de los fármacos , Microtúbulos/efectos de los fármacos , Proteínas de Neoplasias/inmunología , Trombina/farmacología , Animales , Transporte Biológico , Proteínas Adaptadoras de Señalización CARD/genética , Proteínas Adaptadoras de Señalización CARD/inmunología , Caspasas/genética , Línea Celular , Cisteína Endopeptidasas/genética , Enzima Desubiquitinante CYLD , Células Endoteliales/citología , Células Endoteliales/inmunología , Regulación de la Expresión Génica , Quinasa I-kappa B/genética , Quinasa I-kappa B/inmunología , Ratones , Ratones Transgénicos , Microtúbulos/ultraestructura , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas , FN-kappa B/genética , FN-kappa B/inmunología , Proteínas de Neoplasias/genética , Permeabilidad/efectos de los fármacos , Cultivo Primario de Células , Receptor PAR-1/genética , Receptor PAR-1/inmunología , Transducción de Señal , Trombina/metabolismo
6.
Cell Rep ; 1(5): 444-52, 2012 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-22708078

RESUMEN

Excess serum free fatty acids (FFAs) are fundamental to the pathogenesis of insulin resistance. With high-fat feeding, FFAs activate NF-kB in target tissues, initiating negative crosstalk with insulin signaling. However, the mechanisms underlying FFA-dependent NF-kB activation remain unclear. Here, we demonstrate that the saturated FA, palmitate, requires Bcl10 for NF-kB activation in hepatocytes. Uptake of palmitate, metabolism to diacylglycerol, and subsequent activation of protein kinase C (PKC) appear to mechanistically link palmitate with Bcl10, known as a central component of a signaling complex that, along with CARMA3 and MALT1, activates NF-kB downstream of selected cell surface receptors. Consequently, Bcl10-deficient mice are protected from hepatic NF-kB activation and insulin resistance following brief high-fat diet, suggesting that Bcl10 plays a major role in the metabolic consequences of acute overnutrition. Surprisingly, while CARMA3 also participates in the palmitate response, MALT1 is completely dispensable, thereby revealing an apparent nonclassical role for Bcl10 in NF-kB signaling.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Carcinoma Hepatocelular/metabolismo , Ácidos Grasos/farmacología , Hepatocitos/metabolismo , Resistencia a la Insulina/fisiología , Neoplasias Hepáticas/metabolismo , FN-kappa B/metabolismo , Proteínas Adaptadoras Transductoras de Señales/deficiencia , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Proteína 10 de la LLC-Linfoma de Células B , Proteínas Adaptadoras de Señalización CARD/metabolismo , Carcinoma Hepatocelular/patología , Caspasas/metabolismo , Línea Celular Tumoral , Células Cultivadas , Dieta Alta en Grasa , Hepatocitos/efectos de los fármacos , Hepatocitos/patología , Humanos , Neoplasias Hepáticas/patología , Masculino , Ratones , Ratones Noqueados , Modelos Animales , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas , Proteínas de Neoplasias/metabolismo , Hipernutrición/metabolismo , Palmitatos/farmacología , Ratas
7.
J Biol Chem ; 285(34): 25880-4, 2010 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-20605784

RESUMEN

The CARMA1, Bcl10, and MALT1 proteins together constitute a signaling complex (CBM signalosome) that mediates antigen-dependent activation of NF-kappaB in lymphocytes, thereby representing a cornerstone of the adaptive immune response. Although CARMA1 is restricted to cells of the immune system, the analogous CARMA3 protein has a much wider expression pattern. Emerging evidence suggests that CARMA3 can substitute for CARMA1 in non-immune cells to assemble a CARMA3-Bcl10-MALT1 signalosome and mediate G protein-coupled receptor activation of NF-kappaB. Here we show that one G protein-coupled receptor, the type 1 receptor for angiotensin II, utilizes this mechanism for activation of NF-kappaB in endothelial and vascular smooth muscle cells, thereby inducing pro-inflammatory signals within the vasculature, a key factor in atherogenesis. Further, we demonstrate that Bcl10-deficient mice are protected from developing angiotensin-dependent atherosclerosis and aortic aneurysms. By uncovering a novel vascular role for the CBM signalosome, these findings illustrate that CBM-dependent signaling has functions outside the realm of adaptive immunity and impacts pathobiology more broadly than previously known.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Angiotensina II/fisiología , Aterosclerosis/etiología , Proteínas Adaptadoras de Señalización CARD/metabolismo , Caspasas/metabolismo , Proteínas de Neoplasias/metabolismo , Transducción de Señal/fisiología , Animales , Aterosclerosis/patología , Proteína 10 de la LLC-Linfoma de Células B , Vasos Sanguíneos/patología , Endotelio Vascular/patología , Inflamación/etiología , Ratones , Ratones Noqueados , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas , Músculo Liso Vascular/patología , FN-kappa B/metabolismo , Receptor de Angiotensina Tipo 1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...