RESUMEN
Biotransformation of arsenic (As) influences its speciation and mobility, obscuring mechanistic comprehension on spatiotemporal variation of As concentration in geogenic contaminated groundwater. In particular, unresolved processes underlying As redox disequilibrium in comparison to major redox couples discourage practical efforts to rehabilitate the As-contaminated groundwater. Here, quantitative metagenomic sequencing and ultrahigh-resolution mass spectrometry (FT-ICR-MS) were jointly applied to reveal the links between vertical distribution of As metabolic gene assemblages and that of free energy density of dissolved organic matter (DOM) in As-contaminated groundwater of Datong Basin. Observed small excess of Gibbs free energy available by DOM relative to that required for As(V)-to-As(III) reduction exerts thermodynamic constraint on metabolism-mediated redox transformation of As. Accordingly, the vertical distribution of dissolved As(V)/As(III) ratio correlated significantly with that of ars+acr3 and arr encoding As(V) reduction and aio encoding As(III) oxidation in the moderately/strongly reducing groundwater. Further gene-informed biogeochemical modeling suggests that a net effect of these kinetics-restricted bidirectional metabolic pathways leads to co-preservation of As(V) and As(III) even at relatively high rates of ars+acr3 encoded As(V) reduction. This study therefore provides new insights into bioenergetic constraints on As hydrobiogeochemical behavior, with implications for other redox-sensitive contaminants in the groundwater systems.
RESUMEN
Rates of nitrogen transformations support quantitative descriptions and predictive understanding of the complex nitrogen cycle, but measuring these rates is expensive and not readily available to researchers. Here, we compiled a dataset of gross nitrogen transformation rates (GNTR) of mineralization, nitrification, ammonium immobilization, nitrate immobilization, and dissimilatory nitrate reduction to ammonium in terrestrial ecosystems. Data were extracted from 331 studies published from 1984-2022, covering 581 sites. Globally, 1552 observations were appended with standardized soil, vegetation, and climate data (49 variables in total) potentially contributing to the observed variations of GNTR. We used machine learning-based data imputation to fill in partially missing GNTR, which improved statistical relationships between theoretically correlated processes. The dataset is currently the most comprehensive overview of terrestrial ecosystem GNTR and serves as a global synthesis of the extent and variability of GNTR across a wide range of environmental conditions. Future research can utilize the dataset to identify measurement gaps with respect to climate, soil, and ecosystem types, delineate GNTR for certain ecoregions, and help validate process-based models.
Asunto(s)
Ecosistema , Nitrógeno , Nitrógeno/metabolismo , Nitrógeno/análisis , Suelo/química , Ciclo del Nitrógeno , Nitrificación , Compuestos de Amonio/análisis , Nitratos/análisis , Aprendizaje Automático , ClimaRESUMEN
In recent years, there has been a surge in annual plastic production, which has contributed to growing environmental challenges, particularly in the form of microplastics. Effective management of plastic and microplastic waste has become a critical concern, necessitating innovative strategies to address its impact on ecosystems and human health. In this context, catalytic degradation of microplastics emerges as a pivotal approach that holds significant promise for mitigating the persistent effects of plastic pollution. In this article, we critically explored the current state of catalytic degradation of microplastics and discussed the definition of degradation, characterization methods for degradation products, and the criteria for standard sample preparation. Moreover, the significance and effectiveness of various catalytic entities, including enzymes, transition metal ions (for the Fenton reaction), nanozymes, and microorganisms are summarized. Finally, a few key issues and future perspectives regarding the catalytic degradation of microplastics are proposed.
RESUMEN
Data from the International Stormwater Best Management Practices (BMP) Database were used to compare the phosphorus (P) control performance of six categories of stormwater BMPs representing traditional systems (stormwater pond, wetland basin, and detention basin) and low-impact development (LID) systems (bioretention cell, grass swale, and grass strip). Machine learning (ML) models were trained to predict the reduction or enrichment factors of surface runoff concentrations and loadings of total P (TP) and soluble reactive P (SRP) for the different categories of BMP systems. Relative to traditional BMPs, LIDs generally enriched TP and SRP concentrations in stormwater surface outflow and yielded poorer P runoff load control. The SRP concentration reduction and enrichment factors of LIDs also tended to be more sensitive to variations in climate and watershed characteristics. That is, LIDs were more likely to enrich surface runoff SRP concentrations in drier climates, when inflow SRP concentrations were low, and for watersheds exhibiting high impervious land cover. Overall, our results imply that stormwater BMPs do not universally attenuate urban P export and that preferentially implementing LIDs over traditional BMPs may increase TP and SRP export to receiving freshwater bodies, hence magnifying eutrophication risks.
Asunto(s)
Fósforo , Contaminantes Químicos del Agua , LluviaRESUMEN
Massive soil erosion occurs in the world's Mollisol regions due to land use change and climate warming. The migration of Mollisol organic matter to river systems and subsequent changes in carbon biogeochemical flow and greenhouse gas fluxes are of global importance but little understood. By employing comparative mesocosm experiments simulating varying erosion intensity in Mollisol regions of northeastern China, this research highlights that erosion-driven export and biomineralization of terrestrial organic matter facilitates CO2 and CH4 emission from receiving rivers. Stronger Mollisol erosion, as represented by a higher soil-to-water ratio in suspensions, increased CO2 efflux, particularly for the paddy Mollisols. This is mechanistically attributable to increased bioavailability of soluble organic carbon in river water that is sourced back to destabilized organic matter, especially from the cultivated Mollisols. Concurrent changes in microbial community structure have enhanced both aerobic and anaerobic processes as reflected by the coemission of CO2 and CH4. Higher greenhouse gas effluxes from paddy Mollisol suspensions suggest that agricultural land use by supplying more nitrogen-containing, higher-free-energy organic components may have enhanced microbial respiration. These new findings highlight that Mollisol erosion is a hidden significant contributor to greenhouse gas emissions from river water, given that the world's four major Mollisol belts are all experiencing intensive cultivation.
Asunto(s)
Carbono , Gases de Efecto Invernadero , Ríos , Ríos/química , Suelo/química , China , Dióxido de Carbono , Metano/metabolismoRESUMEN
Mollisols rich in natural organic matter are a significant sink of carbon (C) and selenium (Se). Climate warming and agricultural expansion to the cold Mollisol regions may enhance soil respiration and biogeochemical cycles, posing a growing risk of soil C and Se loss. Through field-mimicking incubation experiments with uncultivated and cultivated soils from the Mollisol regions of northeastern China, this research shows that soil respiration remained significant even during cold seasons and caused co-emission of greenhouse gases (CO2 and CH4) and methylated Se. Such stimulus effects were generally stronger in the cultivated soils, with maximum emission rates of 7.45 g/m2/d C and 1.42 µg/m2/d Se. For all soil types, the greatest co-emission of CO2 and dimethyl selenide occurred at 25 % soil moisture, whereas measurable CH4 emission was observed at 40 % soil moisture with higher percentages of dimethyl diselenide volatilization. Molecular characterization with three-dimensional fluorescence and ultra-high resolution mass spectrometry suggests that CO2 emission is sensitive to the availability of microbial protein-like substances and free energy from organic carbon biodegradation under variable moisture conditions. Predominant Se binding to biodegradable organic matter resulted in high dependence of Se volatilization on rates of greenhouse gas emissions. These findings together highlight the importance of dynamic organic carbon quality for soil respiration and consequent Mollisol Se loss risk, with implications for science-based management of C and Se resources in agricultural lands to combat with Se deficiency.
Asunto(s)
Dióxido de Carbono , Gases de Efecto Invernadero , Metano , Selenio , Suelo , Suelo/química , Selenio/análisis , Selenio/metabolismo , Gases de Efecto Invernadero/análisis , Metano/metabolismo , China , Dióxido de Carbono/análisis , Microbiología del Suelo , MetilaciónRESUMEN
A sufficient supply of dissolved silicon (DSi) relative to dissolved phosphorus (DP) may decrease the likelihood of harmful algal blooms in eutrophic waters. Oxidative precipitation of Fe(II) at oxic-anoxic interfaces may contribute to the immobilization of DSi, thereby exerting control over the DSi availability in the overlying water. Nevertheless, the efficacy of DSi immobilization in this context remains to be precisely determined. To investigate the behavior of DSi during Fe(II) oxidation, anoxic solutions containing mixtures of aqueous Fe(II), DSi, and dissolved phosphorus (DP) were exposed to dissolved oxygen (DO) in the batch system. The experimental data, combined with kinetic reaction modeling, indicate that DSi removal during Fe(II) oxidation occurs via two pathways. At the beginning of the experiments, the oxidation of Fe(II)-DSi complexes induces the fast removal of DSi. Upon complete oxidation of Fe(II), further DSi removal is due to adsorption to surface sites of the Fe(III) oxyhydroxides. The presence of DP effectively competes with DSi via both of these pathways during the initial and later stages of the experiments, with as a result more limited removal of DSi during Fe(II) oxidation. Overall, we conclude that at near neutral pH the oxidation of Fe(II) has considerable capacity to immobilize DSi, where the rapid homogeneous oxidation of Fe(II)-DSi results in greater DSi removal compared to surface adsorption. Elevated DP concentration, however, effectively outcompetes DSi in co-precipitation interactions, potentially contributing to enhanced DSi availability within aquatic systems.
Asunto(s)
Hierro , Silicio , Hierro/química , Fósforo/química , Oxidación-Reducción , Agua , Compuestos Ferrosos/químicaRESUMEN
Mollisols are critical agricultural resources for securing global food supply. Due to its health importance, selenium (Se) fate in the Mollisols attracts growing concerns. Land use change from conventional drylands to paddy wetlands impacts Se bioavailability in the vulnerable Mollisol agroecosystems. The underlying processes and mechanisms however remain elusive. Here, results of flow-through reactor experiments with paddy Mollisols from northern cold-region sites indicate that continuous flooding with surface water for 48 d induced redox zonation that facilitated the loss of Mollisol Se by up to 51%. Further process-based biogeochemical modeling suggests largest degradation rates of dissolved organic matter (DOM) in 30 cm deep Mollisols that contained the highest-level labile DOM and organic-bound Se. Electron shunting from degradation of Se-bearing DOM coupled to reductive dissolution of Se-adsorbed Fe oxides accounts mainly for Se(IV) release into the pore water. Consequent changes in DOM molecular composition make the reservoir of organic-bound Se vulnerable to flooding-induced redox zonation and likely enhance Se loss through destruction of thiolated Se and emission of gaseous Se from the Mollisol layer. This study highlights a neglected scenario where the speciation-driven loss of bioavailable Se from the paddy wetlands can be a significant consequence in the cold-region Mollisol agroecosystems.
Asunto(s)
Selenio , Selenio/química , Suelo/química , Humedales , Agricultura , AguaRESUMEN
Cold regions are warming much faster than the global average, resulting in more frequent and intense freeze-thaw cycles (FTCs) in soils. In hydrocarbon-contaminated soils, FTCs modify the biogeochemical and physical processes controlling petroleum hydrocarbon (PHC) biodegradation and the associated generation of methane (CH4) and carbon dioxide (CO2). Thus, understanding the effects of FTCs on the biodegradation of PHCs is critical for environmental risk assessment and the design of remediation strategies for contaminated soils in cold regions. In this study, we developed a diffusion-reaction model that accounts for the effects of FTCs on toluene biodegradation, including methanogenic biodegradation. The model is verified against data generated in a 215 day-long batch experiment with soil collected from a PHC contaminated site in Ontario, Canada. The fully saturated soil incubations with six different treatments were exposed to successive 4-week FTCs, with temperatures oscillating between -10 °C and +15 °C, under anoxic conditions to stimulate methanogenic biodegradation. We measured the headspace concentrations and 13C isotope compositions of CH4 and CO2 and analyzed the porewater for pH, acetate, dissolved organic and inorganic carbon, and toluene. The numerical model represents solute diffusion, volatilization, sorption, as well as a reaction network of 13 biogeochemical processes. The model successfully simulates the soil porewater and headspace concentration time series data by representing the temperature dependencies of microbial reaction and gas diffusion rates during FTCs. According to the model results, the observed increases in the headspace concentrations of CH4 and CO2 by 87% and 136%, respectively, following toluene addition are explained by toluene fermentation and subsequent methanogenesis reactions. The experiment and the numerical simulation show that methanogenic degradation is the primary toluene attenuation mechanism under the electron acceptor-limited conditions experienced by the soil samples, representing 74% of the attenuation, with sorption contributing to 11%, and evaporation contributing to 15%. Also, the model-predicted contribution of acetate-based methanogenesis to total produced CH4 agrees with that derived from the 13C isotope data. The freezing-induced soil matrix organic carbon release is considered as an important process causing DOC increase following each freezing period according to the calculations of carbon balance and SUVA index. The simulation results of a no FTC scenario indicate that, in the absence of FTCs, CO2 and CH4 generation would decrease by 29% and 26%, respectively, and that toluene would be biodegraded 23% faster than in the FTC scenario. Because our modeling approach represents the dominant processes controlling PHC biodegradation and the associated CH4 and CO2 fluxes, it can be used to analyze the sensitivity of these processes to FTC frequency and duration driven by temperature fluctuations.
Asunto(s)
Dióxido de Carbono , Petróleo , Congelación , Hidrocarburos/metabolismo , Metano , Petróleo/análisis , Tolueno , Suelo/química , OntarioRESUMEN
Phosphorus (P) export from urban areas via stormwater runoff contributes to eutrophication of downstream aquatic ecosystems. Bioretention cells are a Low Impact Development (LID) technology promoted as a green solution to attenuate urban peak flow discharge, as well as the export of excess nutrients and other contaminants. Despite their rapidly growing implementation worldwide, a predictive understanding of the efficiency of bioretention cells in reducing urban P loadings remains limited. Here, we present a reaction-transport model to simulate the fate and transport of P in a bioretention cell facility in the greater Toronto metropolitan area. The model incorporates a representation of the biogeochemical reaction network that controls P cycling within the cell. We used the model as a diagnostic tool to determine the relative importance of processes immobilizing P in the bioretention cell. The model predictions were compared to multi-year observational data on 1) the outflow loads of total P (TP) and soluble reactive P (SRP) during the 2012-2017 period, 2) TP depth profiles collected at 4 time points during the 2012-2019 period, and 3) sequential chemical P extractions performed on core samples from the filter media layer obtained in 2019. Results indicate that exfiltration to underlying native soil was principally responsible for decreasing the surface water discharge from the bioretention cell (63 % runoff reduction). From 2012 to 2017, the cumulative outflow export loads of TP and SRP only accounted for 1 % and 2 % of the corresponding inflow loads, respectively, hence demonstrating the extremely high P reduction efficiency of this bioretention cell. Accumulation in the filter media layer was the predominant mechanism responsible for the reduction in P outflow loading (57 % retention of TP inflow load) followed by plant uptake (21 % TP retention). Of the P retained within the filter media layer, 48 % occurred in stable, 41 % in potentially mobilizable, and 11 % in easily mobilizable forms. There were no signs that the P retention capacity of the bioretention cell was approaching saturation after 7 years of operation. The reactive transport modeling approach developed here can in principle be transferred and adapted to fit other bioretention cell designs and hydrological regimes to estimate P surface loading reductions at a range of temporal scales, from a single precipitation event to long-term (i.e., multi-year) operation.
Asunto(s)
Ecosistema , Fósforo , Lluvia , Suelo , Adsorción , NitrógenoRESUMEN
The genesis of geogenic iodine (I)-contaminated groundwater poses a significant threat to long-term water exploitation. Safe and sustainable water supply, particularly in the northern arid basins, demands a quantitative prediction of the high variability of I distribution over hydrogeological timescales. Here, bioenergetics-informed reactive transport modeling was combined with high-resolution molecular characterization of fueling organic matter to decipher the time-controlled interactions between vertical flow and (bio)geochemical processes in I transport within the Datong aquifers. The declining reactivities of I-bearing organic matter and Fe oxides in the 15-40 m depth decreased the rate of I release, while a growing number of pore volumes flushed through the aquifers to leach out I- and organic I. This removal effect is compensated by the desorption of I- from Fe oxides and secondary FeS generated from the concurrent reduction of Fe oxides and SO42-. Consequently, peak concentrations of groundwater I- may have appeared, depending upon the vertical recharge rate, at the first several pore volumes flushed through the aquifers. The current vertical distributions of the various I species likely represent a quasi-steady state between I mobilization and leaching. These new mechanistic insights into the dynamic hydrogeological-(bio)geochemical processes support secure groundwater use in the I-affected northern arid basins.
Asunto(s)
Arsénico , Agua Subterránea , Yodo , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , Agua Subterránea/química , Abastecimiento de Agua , ÓxidosRESUMEN
Mollisols support the most productive agroecosystems in the world. Despite their critical links to food quality and human health, the varying distributions of selenium (Se) species and factors governing Se mobility in the mollisol vadose zone remain elusive. This research reveals that, in northern mollisol agroecosystems, Se hotspots (≥0.32 mg/kg) prevail along the regional river systems draining the Lesser Khingan Mountains, where piedmont Se-rich oil shales are the most probable source of regional Se. While selenate and selenite dominate Se species in the water-soluble and absorbed pools, mollisol organic matter is the major host for Se. Poorly crystalline and crystalline Fe oxides are subordinate in Se retention, hosting inorganic and organic Se at levels comparable to those in the adsorbed pool. The depth-dependent distributions of mollisol Se species for the non-cropland and cropland sites imply a predominance of reduced forms of Se under the mildly acidic and reducing conditions that, in turn, are variably impacted by agricultural land use. These findings therefore highlight that fluvial deposition and land use change together are the main drivers of the spatial variability and speciation of mollisol Se.
Asunto(s)
Compuestos de Selenio , Selenio , Humanos , Ácido Selenioso , Agricultura , Ácido Selénico , AguaRESUMEN
In situ bioremediation is a common remediation strategy for many groundwater contaminants. It was traditionally believed that (in the absence of mixing-limitations) a better in situ bioremediation is obtained in a more homogeneous medium where the even distribution of both substrate and bacteria facilitates the access of a larger portion of the bacterial community to a higher amount of substrate. Such conclusions were driven with the typical assumption of disregarding substrate inhibitory effects on the metabolic activity of enzymes at high concentration levels. To investigate the influence of pore matrix heterogeneities on substrate inhibition, we use a numerical approach to solve reactive transport processes in the presence of pore-scale heterogeneities. To this end, a rigorous reactive pore network model is developed and used to model the reactive transport of a self-inhibiting substrate under both transient and steady-state conditions through media with various, spatially correlated, pore-size distributions. For the first time, we explore on the basis of a pore-scale model approach the link between pore-size heterogeneities and substrate inhibition. Our results show that for a self-inhibiting substrate, (1) pore-scale heterogeneities can consistently promote degradation rates at toxic levels, (2) the effect reverses when the concentrations fall to levels essential for microbial growth, and (3) an engineered combination of homogeneous and heterogeneous media can increase the overall efficiency of bioremediation.
Asunto(s)
Agua Subterránea , Bacterias/metabolismo , Biodegradación Ambiental , Modelos TeóricosRESUMEN
The availability of dissolved silicon (DSi) exerts an important control on phytoplankton communities in freshwater environments: DSi limitation can shift species dominance to non-siliceous algae and increase the likelihood of harmful algal blooms. The availability of DSi in the water column in turn depends on the dissolution kinetics of amorphous silica (ASi), including diatoms frustules and phytoliths. Here, batch dissolution experiments conducted with diatom frustules from three diatom species and synthetic Aerosil OX 50 confirmed the previously reported non-linear dependence of ASi dissolution rate on the degree of undersaturation of the aqueous solution. At least two first-order dissolution rate constants are therefore required to describe the dissolution kinetics at high (typically, ≥0.55) and low (typically, <0.55) degrees of undersaturation. Our results further showed aqueous ferrous ion (Fe2+), which is ubiquitous in anoxic waters, strongly inhibited ASi dissolution. The inhibition is attributed to the preferential binding of Fe2+ to Q2 groups (i.e., surface silicate groups bonded to the silica lattice via two bridging oxygen) which stabilizes the silica surface. However, further increasing the aqueous Fe2+ concentration likely catalyzes the detachment of Q3 groups (i.e., silicate groups bonded to the silica lattice via three bridging oxygen) from the surface. Overall, our study illustrates the manyfold effects the aqueous solution composition, notably the inhibition effect of Fe2+ under anoxic conditions, has on ASi dissolution. The results help to explain the controversial redox dependence of DSi internal loading from sediments, which is vital to quantitatively understanding silicon (Si) cycling in freshwater systems.
Asunto(s)
Diatomeas , Dióxido de Silicio , Dióxido de Silicio/química , Silicio , Solubilidad , Diatomeas/metabolismo , Agua Dulce , Agua/metabolismo , Oxígeno/metabolismoRESUMEN
Lake Wilcox (LW), a shallow kettle lake located in southern Ontario, has experienced multiple phases of land use change associated with human settlement and residential development in its watershed since the early 1900s. Urban growth has coincided with water quality deterioration, including the occurrence of algal blooms and depletion of dissolved oxygen (DO) in the water column. We analyzed 22 years of water chemistry, land use, and climate data (1996-2018) using principal component analysis (PCA) and multiple linear regression (MLR) to identify the contributions of climate, urbanization, and nutrient loading to the changes in water chemistry. Variations in water column stratification, phosphorus (P) speciation, and chl-a (as a proxy for algal abundance) explain 76 % of the observed temporal trends of the four main PCA components derived from water chemistry data. MLR results further imply that the intensity of stratification, quantified by the Brunt-Väisälä frequency, is a major predictor of the changes in water quality. Other important factors explaining the variations in nitrogen (N) and P speciation, and the DO concentrations, are watershed imperviousness and lake chloride concentrations that, in turn, are closely correlated. We conclude that the observed in-lake water quality trends over the past two decades are linked to urbanization via increased salinization associated with expanding impervious land cover, rather than increasing external P loading. The rising salinity promotes water column stratification, which reduces the oxygenation of the hypolimnion and enhances internal P loading to the water column. Thus, stricter controls on the application and runoff of de-icing salt should be considered as part of managing eutrophication symptoms in lakes of cold climate regions.
Asunto(s)
Monitoreo del Ambiente , Lagos , Eutrofización , Humanos , Nitrógeno/análisis , Ontario , Fósforo/análisis , Calidad del AguaRESUMEN
Management strategies aimed at reducing nutrient enrichment of surface waters may be hampered by nutrient legacies that have accumulated in the landscape. Here, we apply the Net Anthropogenic Phosphorus Input (NAPI) model to reconstruct the historical phosphorus (P) input trajectories for the province of Ontario, which encompasses the Canadian portion of the drainage basin of the Laurentian Great Lakes (LGL). NAPI considers P inputs from detergent, human and livestock waste, fertilizer inputs, and P outputs by crop uptake. During the entire time period considered, from 1961 to 2016, Ontario experienced positive annual NAPI values. Despite a generally downward NAPI trend since the late 1970s, the lower LGL, especially Lake Erie, continue to be plagued by algal blooms. When comparing NAPI results and river monitoring data for the period 2003 to 2013, P discharged by Canadian rivers into Lake Erie only accounts for 12.5% of the NAPI supplied to the watersheds' agricultural areas. Thus, over 85% of the agricultural NAPI is retained in the watersheds where it contributes to a growing P legacy, primarily as soil P. The slow release of legacy P therefore represents a long-term risk to the recovery of the lake. To help mitigate this risk, we present a methodology to spatially map out the source areas with the greatest potential of erosional export of legacy soil P to surface waters. These areas should be prioritized in soil conservation efforts.
Asunto(s)
Monitoreo del Ambiente , Fósforo , Agricultura/métodos , Canadá , Humanos , Lagos , Ontario , Fósforo/análisis , RíosRESUMEN
Flavins and siderophores secreted by various plants, fungi and bacteria under iron (Fe) deficient conditions play important roles in the biogeochemical cycling of Fe in the environment. Although the mechanisms of flavin and siderophore mediated Fe(III) reduction and dissolution under anoxic conditions have been widely studied, the influence of these compounds on Fe(II) oxidation under oxic conditions is still unclear. In this study, we investigated the kinetics of aqueous Fe(II) (17.8 µM) oxidation by O2 at pH 5â7 in the presence of riboflavin (oxidized (RBF) and reduced (RBFH2)) and desferrioxamine B (DFOB) as representative flavins and siderophores, respectively. Results showed that the addition of RBF/RBFH2 or DFOB markedly accelerates the oxidation of aqueous Fe(II) by O2. For instance, at pH 6, the rate of Fe(II) oxidation was enhanced 20â70 times when 10 µM RBFH2 was added. The mechanisms responsible for the accelerated Fe(II) oxidation are related to the redox reactivity and complexation ability of RBFH2, RBF and DFOB. While RBFH2 does not readily complex Fe(II)/Fe(III), it can activate O2 and generate reactive oxygen species, which then rapidly oxidize Fe(II). In contrast, both RBF and DFOB do not reduce O2 but react with Fe(II) to form RBF/DFOB-complexed Fe(II), which in turn accelerates Fe(II) oxidation. Furthermore, the lower standard reduction potential of the Fe(II)-DFOB complex, compared to the Fe(II)-RBF complex, correlates with a higher oxidation rate constant for the Fe(II)-DFOB complex. Our study reveals an overlooked catalytic role of flavins and siderophores that may contribute to Fe(II)/Fe(III) cycling at oxic-anoxic interfaces.
RESUMEN
Peat accumulation in high latitude wetlands represents a natural long-term carbon sink, resulting from the cumulative excess of growing season net ecosystem production over non-growing season (NGS) net mineralization in soils. With high latitudes experiencing warming at a faster pace than the global average, especially during the NGS, a major concern is that enhanced mineralization of soil organic carbon will steadily increase CO2 emissions from northern peatlands. In this study, we conducted laboratory incubations with soils from boreal and temperate peatlands across Canada. Peat soils were pretreated for different soil moisture levels, and CO2 production rates were measured at 12 sequential temperatures, covering a range from - 10 to + 35 °C including one freeze-thaw event. On average, the CO2 production rates in the boreal peat samples increased more sharply with temperature than in the temperate peat samples. For same temperature, optimum soil moisture levels for CO2 production were higher in the peat samples from more flooded sites. However, standard reaction kinetics (e.g., Q10 temperature coefficient and Arrhenius equation) failed to account for the apparent lack of temperature dependence of CO2 production rates measured below 0 °C, and a sudden increase after a freezing event. Thus, we caution against using the simple kinetic expressions to represent the CO2 emissions from northern peatlands, especially regarding the long NGS period with multiple soil freeze and thaw events.
RESUMEN
Microbial growth is a clear example of organization and structure arising in nonequilibrium conditions. Due to the complexity of the microbial metabolic network, elucidating the fundamental principles governing microbial growth remains a challenge. Here, we present a systematic analysis of microbial growth thermodynamics, leveraging an extensive dataset on energy-limited monoculture growth. A consistent thermodynamic framework based on reaction stoichiometry allows us to quantify how much of the available energy microbes can efficiently convert into new biomass while dissipating the remaining energy into the environment and producing entropy. We show that dissipation mechanisms can be linked to the electron donor uptake rate, a fact leading to the central result that the thermodynamic efficiency is related to the electron donor uptake rate by the scaling law [Formula: see text] and to the growth yield by [Formula: see text] These findings allow us to rederive the Pirt equation from a thermodynamic perspective, providing a means to compute its coefficients, as well as a deeper understanding of the relationship between growth rate and yield. Our results provide rather general insights into the relation between mass and energy conversion in microbial growth with potentially wide application, especially in ecology and biotechnology.
Asunto(s)
Bacterias/crecimiento & desarrollo , Modelos Biológicos , Termodinámica , Bacterias/química , Biomasa , EntropíaRESUMEN
Rising industrial interest in the application of nanomaterials for the remediation of contaminated sites has led to concern over the environmental fate of the nanoremediation agents used. A critical requirement in evaluating and understanding nanoparticle (NP) behaviour in porous media is the development of analytical methods capable of in situ monitoring of complex NP transport dynamics. Spectral induced polarization (SIP), a non-invasive geo-electrical technique, offers a promising tool for detecting and quantifying NPs in soil and aquifer media. However, its application for monitoring the spatial migration and attachment behaviour of NPs remains uninvestigated. Here, we present results from flow-through experiments where we monitored the transport of cobalt ferrite nanoparticles (CoFe-NPs) coated with Pluronic, an amphiphilic polymer, in natural aquifer sand columns. We coupled concentration breakthrough curve analysis with SIP monitoring and reactive transport modeling to relate spatiotemporal NP concentration distributions to geo-electrical signals. Changes in the real (σ') conductivity at three different locations along the columns closely correlated with model-computed total (solid plus aqueous phase) NP concentrations during the propagation of a NP slug. The imaginary conductivity (σâ³) correlated closely with the arrival of the NP-slug. However, during the receding front, bimodal σâ³-signal peak behaviour was observed propagating through the columns, indicating the existence of complex in situ NP transport dynamics, potentially revealing the rupture of nanoclusters upon straining and their effect on bulk charge storage that may not be obvious from breakthrough curve data alone. Fitting of a double Cole-Cole relaxation model yielded distinct shifts in relaxation time (τ) associated with the polarization of smaller length-scale particles. Post-NP pulse τ and σâ³ did not return to pre-injection values; these lingering signals were caused by retained NP concentrations as low as 8.8 mg kg-1. Our results support the applicability of SIP for spatial and temporal monitoring of NP distributions, with implications for the investigation of NP transport and nanoremediation strategies.