Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
BMC Pediatr ; 24(1): 384, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849784

RESUMEN

BACKGROUND: Preterm born infants are at risk for brain injury and subsequent developmental delay. Treatment options are limited, but optimizing postnatal nutrition may improve brain- and neurodevelopment in these infants. In pre-clinical animal models, combined supplementation of docosahexaenoic acid (DHA), choline, and uridine-5-monophosphate (UMP) have shown to support neuronal membrane formation. In two randomized controlled pilot trials, supplementation with the investigational product was associated with clinically meaningful improvements in cognitive, attention, and language scores. The present study aims to assess the effect of a similar nutritional intervention on brain development and subsequent neurodevelopmental outcome in infants born very and extremely preterm. METHODS: This is a randomized, placebo-controlled, double-blinded, parallel-group, multi-center trial. A total of 130 infants, born at less than 30 weeks of gestation, will be randomized to receive a test or control product between term-equivalent age and 12 months corrected age (CA). The test product is a nutrient blend containing DHA, choline, and UMP amongst others. The control product contains only fractions of the active components. Both products are isocaloric powder supplements which can be added to milk and solid feeds. The primary outcome parameter is white matter integrity at three months CA, assessed using diffusion-tensor imaging (DTI) on MRI scanning. Secondary outcome parameters include volumetric brain development, cortical thickness, cortical folding, the metabolic and biochemical status of the brain, and product safety. Additionally, language, cognitive, motor, and behavioral development will be assessed at 12 and 24 months CA, using the Bayley Scales of Infant Development III and digital questionnaires (Dutch version of the Communicative Development Inventories (N-CDI), Ages and Stages Questionnaire 4 (ASQ-4), and Parent Report of Children's Abilities - Revised (PARCA-R)). DISCUSSION: The investigated nutritional intervention is hypothesized to promote brain development and subsequent neurodevelopmental outcome in preterm born infants who have an inherent risk of developmental delay. Moreover, this innovative study may give rise to new treatment possibilities and improvements in routine clinical care. TRIAL REGISTRATION: WHO International Clinical Trials Registry: NL-OMON56181 (registration assigned October 28, 2021).


Asunto(s)
Encéfalo , Colina , Suplementos Dietéticos , Ácidos Docosahexaenoicos , Uridina Monofosfato , Humanos , Lactante , Recién Nacido , Encéfalo/crecimiento & desarrollo , Encéfalo/diagnóstico por imagen , Desarrollo Infantil , Ácidos Docosahexaenoicos/administración & dosificación , Método Doble Ciego , Recien Nacido Extremadamente Prematuro/crecimiento & desarrollo , Recien Nacido Prematuro/crecimiento & desarrollo , Ensayos Clínicos Controlados Aleatorios como Asunto
2.
Neuroimage Rep ; 3(2): 100175, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38357432

RESUMEN

Background: Brain MRI in infants at ultra-high-field scanners might improve diagnostic quality, but safety should be evaluated first. In our previous study, we reported simulated specific absorption rates and acoustic noise data at 7 Tesla. Methods: In this study, we included twenty infants between term-equivalent age and three months of age. The infants were scanned on a 7 Tesla MRI directly after their clinically indicated 3 Tesla brain MRI scan. Vital parameters, temperature, and comfort were monitored throughout the process. Brain temperature was estimated during the MRI scans using proton MR spectroscopy. Results: We found no significant differences in vital parameters, temperature, and comfort during and after 7 Tesla MRI scans, compared to 3 Tesla MRI scans. Conclusions: These data confirm our hypothesis that scanning infants at 7 Tesla MRI appears to be safe and we identified no additional risks from scanning at 3 Tesla MRI.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...