RESUMEN
BACKGROUND: MicroRNAs (miRNAs) are small non-coding RNAs that post-transcriptionally regulate gene expression. Perturbations in plasma miRNA levels are known to impact disease risk and have potential as disease biomarkers. Exploring the genetic regulation of miRNAs may yield new insights into their important role in governing gene expression and disease mechanisms. RESULTS: We present genome-wide association studies of 2083 plasma circulating miRNAs in 2178 participants of the Rotterdam Study to identify miRNA-expression quantitative trait loci (miR-eQTLs). We identify 3292 associations between 1289 SNPs and 63 miRNAs, of which 65% are replicated in two independent cohorts. We demonstrate that plasma miR-eQTLs co-localise with gene expression, protein, and metabolite-QTLs, which help in identifying miRNA-regulated pathways. We investigate consequences of alteration in circulating miRNA levels on a wide range of clinical conditions in phenome-wide association studies and Mendelian randomisation using the UK Biobank data (N = 423,419), revealing the pleiotropic and causal effects of several miRNAs on various clinical conditions. In the Mendelian randomisation analysis, we find a protective causal effect of miR-1908-5p on the risk of benign colon neoplasm and show that this effect is independent of its host gene (FADS1). CONCLUSIONS: This study enriches our understanding of the genetic architecture of plasma miRNAs and explores the signatures of miRNAs across a wide range of clinical conditions. The integration of population-based genomics, other omics layers, and clinical data presents opportunities to unravel potential clinical significance of miRNAs and provides tools for novel miRNA-based therapeutic target discovery.
Asunto(s)
Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Humanos , MicroARN Circulante/genética , MicroARN Circulante/sangre , Regulación de la Expresión Génica , Femenino , Masculino , Anciano , Predisposición Genética a la Enfermedad , MicroARNs/genética , MicroARNs/sangre , Análisis de la Aleatorización Mendeliana , Persona de Mediana Edad , Neoplasias del Colon/genética , Neoplasias del Colon/sangreRESUMEN
INTRODUCTION: This study assessed the association of plasma biomarkers of endothelial dysfunction with cognitive performance and decline. METHODS: Data from 9414 individuals from eight Dutch cohorts were included (Ø age-range: 57-93 years). Plasma biomarkers of endothelial dysfunction (soluble intercellular adhesion molecule-1 (sICAM-1), soluble vascular cell adhesion molecule-1 (sVCAM-1), soluble E-selectin) were combined into a standardized composite score. Cognitive outcomes included executive function, processing speed, immediate and delayed memory, attention, and language. Linear regressions and linear mixed models were run in the individual cohorts and standardized coefficients were subsequently pooled using random-effects meta-analyses. RESULTS: A higher endothelial dysfunction composite score was cross-sectionally associated with worse performance on executive function, processing speed, delayed memory, and attention, but not immediate memory or language (pooled ß-range: -0.04, -0.02). We found no association with change in cognition over time. DISCUSSION: This comprehensive two-step, individual participant data (IPD) meta-analysis showed a small, consistent cross-sectional association between endothelial dysfunction and worse cognitive performance across multiple domains but no support for a longitudinal association. HIGHLIGHTS: Prior evidence on endothelial dysfunction (ED) biomarkers and cognition is conflicting. This two-step, individual participant data (IPD) meta-analysis used data from eight Dutch cohorts. ED was consistently associated with concurrent cognition. ED was not associated with a change in cognition over time. The association of ED with current cognition may be generic.
RESUMEN
BACKGROUND: Epigenome-wide association studies have identified multiple DNA methylation sites (CpGs) associated with alcohol consumption, an important lifestyle risk factor for cardiovascular diseases. This study aimed to test the hypothesis that an alcohol consumption epigenetic risk score (ERS) is associated with blood pressure (BP) traits. RESULTS: We implemented an ERS based on a previously reported epigenetic signature of 144 alcohol-associated CpGs in meta-analysis of participants of European ancestry. We found a one-unit increment of ERS was associated with eleven drinks of alcohol consumed per day, on average, across several cohorts (p < 0.0001). We examined the association of the ERS with systolic blood pressure (SBP), diastolic blood pressure (DBP), and hypertension (HTN) in 3,898 Framingham Heart Study (FHS) participants. Cross-sectional analyses in FHS revealed that a one-unit increment of the ERS was associated with 1.93 mm Hg higher SBP (p = 4.64E-07), 0.68 mm Hg higher DBP (p = 0.006), and an odds ratio of 1.78 for HTN (p < 2E-16). Meta-analysis of the cross-sectional association of the ERS with BP traits in eight independent external cohorts (n = 11,544) showed similar relationships with BP levels, i.e., a one-unit increase in ERS was associated with 0.74 mm Hg (p = 0.002) higher SBP and 0.50 mm Hg (p = 0.0006) higher DBP, but not with HTN. Longitudinal analyses in FHS (n = 3260) and five independent external cohorts (n = 4021) showed that the baseline ERS was not associated with a change in BP over time or with incident HTN. CONCLUSIONS: Our findings demonstrate that the ERS has potential clinical utility in assessing lifestyle factors related to cardiovascular risk, especially when self-reported behavioral data (e.g., alcohol consumption) are unreliable or unavailable.
Asunto(s)
Consumo de Bebidas Alcohólicas , Presión Sanguínea , Metilación de ADN , Epigénesis Genética , Estudio de Asociación del Genoma Completo , Hipertensión , Humanos , Consumo de Bebidas Alcohólicas/genética , Consumo de Bebidas Alcohólicas/efectos adversos , Presión Sanguínea/genética , Femenino , Masculino , Hipertensión/genética , Hipertensión/epidemiología , Metilación de ADN/genética , Persona de Mediana Edad , Estudios Transversales , Estudio de Asociación del Genoma Completo/métodos , Factores de Riesgo , Islas de CpG/genética , Anciano , AdultoRESUMEN
Integrating multi-omics data into predictive models has the potential to enhance accuracy, which is essential for precision medicine. In this study, we developed interpretable predictive models for multi-omics data by employing neural networks informed by prior biological knowledge, referred to as visible networks. These neural networks offer insights into the decision-making process and can unveil novel perspectives on the underlying biological mechanisms associated with traits and complex diseases. We tested the performance, interpretability and generalizability for inferring smoking status, subject age and LDL levels using genome-wide RNA expression and CpG methylation data from the blood of the BIOS consortium (four population cohorts, Ntotal = 2940). In a cohort-wise cross-validation setting, the consistency of the diagnostic performance and interpretation was assessed. Performance was consistently high for predicting smoking status with an overall mean AUC of 0.95 (95% CI: 0.90-1.00) and interpretation revealed the involvement of well-replicated genes such as AHRR, GPR15 and LRRN3. LDL-level predictions were only generalized in a single cohort with an R2 of 0.07 (95% CI: 0.05-0.08). Age was inferred with a mean error of 5.16 (95% CI: 3.97-6.35) years with the genes COL11A2, AFAP1, OTUD7A, PTPRN2, ADARB2 and CD34 consistently predictive. For both regression tasks, we found that using multi-omics networks improved performance, stability and generalizability compared to interpretable single omic networks. We believe that visible neural networks have great potential for multi-omics analysis; they combine multi-omic data elegantly, are interpretable, and generalize well to data from different cohorts.
Asunto(s)
Redes Neurales de la Computación , Fenotipo , Humanos , Estudios de Cohortes , Metilación de ADN/genética , Masculino , Femenino , Persona de Mediana Edad , Fumar/genética , Genómica/métodos , Adulto , Biología Computacional/métodos , Islas de CpG/genética , Anciano , MultiómicaRESUMEN
BACKGROUND: The plasma metabolome reflects the physiological state of various biological processes and can serve as a proxy for disease risk. Plasma metabolite variation, influenced by genetic and epigenetic mechanisms, can also affect the cellular microenvironment and blood cell epigenetics. The interplay between the plasma metabolome and the blood cell epigenome remains elusive. In this study, we performed an epigenome-wide association study (EWAS) of 1183 plasma metabolites in 693 participants from the LifeLines-DEEP cohort and investigated the causal relationships in DNA methylation-metabolite associations using bidirectional Mendelian randomization and mediation analysis. RESULTS: After rigorously adjusting for potential confounders, including genetics, we identified five robust associations between two plasma metabolites (L-serine and glycine) and three CpG sites located in two independent genomic regions (cg14476101 and cg16246545 in PHGDH and cg02711608 in SLC1A5) at a false discovery rate of less than 0.05. Further analysis revealed a complex bidirectional relationship between plasma glycine/serine levels and DNA methylation. Moreover, we observed a strong mediating role of DNA methylation in the effect of glycine/serine on the expression of their metabolism/transport genes, with the proportion of the mediated effect ranging from 11.8 to 54.3%. This result was also replicated in an independent population-based cohort, the Rotterdam Study. To validate our findings, we conducted in vitro cell studies which confirmed the mediating role of DNA methylation in the regulation of PHGDH gene expression. CONCLUSIONS: Our findings reveal a potential feedback mechanism in which glycine and serine regulate gene expression through DNA methylation.
Asunto(s)
Metilación de ADN , Epigénesis Genética , Estudio de Asociación del Genoma Completo , Glicina , Metaboloma , Serina , Humanos , Glicina/sangre , Serina/sangre , Serina/genética , Metilación de ADN/genética , Masculino , Femenino , Estudio de Asociación del Genoma Completo/métodos , Metaboloma/genética , Epigénesis Genética/genética , Persona de Mediana Edad , Islas de CpG/genética , Epigenoma/genética , Adulto , Anciano , Análisis de la Aleatorización MendelianaRESUMEN
BACKGROUND: 1H-NMR metabolomics and DNA methylation in blood are widely known biomarkers predicting age-related physiological decline and mortality yet exert mutually independent mortality and frailty signals. METHODS: Leveraging multi-omics data in four Dutch population studies (N = 5238, â¼40% of which male) we investigated whether the mortality signal captured by 1H-NMR metabolomics could guide the construction of DNA methylation-based mortality predictors. FINDINGS: We trained DNA methylation-based surrogates for 64 metabolomic analytes and found that analytes marking inflammation, fluid balance, or HDL/VLDL metabolism could be accurately reconstructed using DNA-methylation assays. Interestingly, a previously reported multi-analyte score indicating mortality risk (MetaboHealth) could also be accurately reconstructed. Sixteen of our derived surrogates, including the MetaboHealth surrogate, showed significant associations with mortality, independent of relevant covariates. INTERPRETATION: The addition of our metabolic analyte-derived surrogates to the well-established epigenetic clock GrimAge demonstrates that our surrogates potentially represent valuable mortality signal. FUNDING: BBMRI-NL, X-omics, VOILA, Medical Delta, NWO, ERC.
Asunto(s)
Biomarcadores , Metilación de ADN , Metabolómica , Humanos , Metabolómica/métodos , Masculino , Femenino , Anciano , Mortalidad , Metaboloma , Persona de Mediana Edad , Espectroscopía de Resonancia Magnética/métodos , Anciano de 80 o más AñosRESUMEN
Background: Epigenome-wide association studies have revealed multiple DNA methylation sites (CpGs) associated with alcohol consumption, an important lifestyle risk factor for cardiovascular diseases. Results: We generated an alcohol consumption epigenetic risk score (ERS) based on previously reported 144 alcohol-associated CpGs and examined the association of the ERS with systolic blood pressure (SBP), diastolic blood pressure (DBP), and hypertension (HTN) in 3,898 Framingham Heart Study (FHS) participants. We found an association of alcohol intake with the ERS in the meta-analysis with 0.09 units higher ERS per drink consumed per day (p < 0.0001). Cross-sectional analyses in FHS revealed that a one-unit increment of the ERS was associated with 1.93 mm Hg higher SBP (p = 4.64E-07), 0.68 mm Hg higher DBP (p = 0.006), and an odds ratio of 1.78 for HTN (p < 2E-16). Meta-analysis of the cross-sectional association of the ERS with BP traits in eight independent external cohorts (n = 11,544) showed similar relationships with blood pressure levels, i.e., a one-unit increase in ERS was associated with 0.74 (p = 0.002) and 0.50 (p = 0.0006) mm Hg higher SBP and DBP, but could not confirm the association with hypertension. Longitudinal analyses in FHS (n = 3,260) and five independent external cohorts (n = 4,021) showed that the baseline ERS was not associated with a change in blood pressure over time or with incident HTN. Conclusions: Our findings provide proof-of-concept that utilizing an ERS is a useful approach to capture the recent health consequences of lifestyle behaviors such as alcohol consumption.
RESUMEN
OBJECTIVE: To identify genetic risk factors for incident cardiovascular disease (CVD) among people with type 2 diabetes (T2D). RESEARCH DESIGN AND METHODS: We conducted a multiancestry time-to-event genome-wide association study for incident CVD among people with T2D. We also tested 204 known coronary artery disease (CAD) variants for association with incident CVD. RESULTS: Among 49,230 participants with T2D, 8,956 had incident CVD events (event rate 18.2%). We identified three novel genetic loci for incident CVD: rs147138607 (near CACNA1E/ZNF648, hazard ratio [HR] 1.23, P = 3.6 × 10-9), rs77142250 (near HS3ST1, HR 1.89, P = 9.9 × 10-9), and rs335407 (near TFB1M/NOX3, HR 1.25, P = 1.5 × 10-8). Among 204 known CAD loci, 5 were associated with incident CVD in T2D (multiple comparison-adjusted P < 0.00024, 0.05/204). A standardized polygenic score of these 204 variants was associated with incident CVD with HR 1.14 (P = 1.0 × 10-16). CONCLUSIONS: The data point to novel and known genomic regions associated with incident CVD among individuals with T2D.
Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus Tipo 2 , Estudio de Asociación del Genoma Completo , Humanos , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/complicaciones , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/epidemiología , Femenino , Masculino , Persona de Mediana Edad , Anciano , Polimorfismo de Nucleótido SimpleRESUMEN
A common feature of human aging is the acquisition of somatic mutations, and mitochondria are particularly prone to mutation due to their inefficient DNA repair and close proximity to reactive oxygen species, leading to a state of mitochondrial DNA heteroplasmy1,2. Cross-sectional studies have demonstrated that detection of heteroplasmy increases with participant age3, a phenomenon that has been attributed to genetic drift4-7. In this first large-scale longitudinal study, we measured heteroplasmy in two prospective cohorts (combined n=1405) at two timepoints (mean time between visits, 8.6 years), demonstrating that deleterious heteroplasmies were more likely to increase in variant allele fraction (VAF). We further demonstrated that increase in VAF was associated with increased risk of overall mortality. These results challenge the claim that somatic mtDNA mutations arise mainly due to genetic drift, instead demonstrating positive selection for predicted deleterious mutations at the cellular level, despite an negative impact on overall mortality.
RESUMEN
Importance: It has been demonstrated that total physical activity is not associated with risk of osteoarthritis. However, the association of different types of physical activity with incident knee osteoarthritis remains unclear. Objective: To determine whether weight-bearing recreational physical activities are associated with increased risk of incident knee osteoarthritis. Design, Setting, and Participants: This prospective cohort study used data from the Rotterdam Study (1996 to 2009), including participants with knee x-ray measurements at baseline and follow-up examinations. Participants with knee osteoarthritis at baseline were excluded. Residents aged 45 years and older of the Ommoord district in the city of Rotterdam in The Netherlands were invited to join the Rotterdam Study (78% response rate). Analysis was conducted in June 2023. Exposure: Total, weight-bearing, and non-weight-bearing recreational physical activities collected by questionnaires at baseline. Main Outcomes and Measures: Incident radiographic knee osteoarthritis measured by knee x-ray was the primary outcome, and incident symptomatic knee osteoarthritis defined by x-ray and knee pain questionnaire was the secondary outcome. The association of different types of recreational physical activity with radiographic knee osteoarthritis was examined using logistic regression within generalized estimating equation framework after adjusting for potential confounders. A prespecified stratification analysis was planned on the basis of lower-limb muscle mass index (LMI) tertiles, measured by dual-energy x-ray absorptiometry. Results: A total of 5003 individuals (2804 women [56.0%]; mean [SD] age, 64.5 [7.9] years) were included. The knee osteoarthritis incident rate was 8.4% (793 of 9483 knees) for a mean (SD) follow-up time of 6.33 (2.46) years. Higher weight-bearing activity was associated with increased odds of incident knee osteoarthritis (odds ratio [OR], 1.22; 95% CI, 1.10-1.35; P < .001), but non-weight-bearing activity was not (OR, 1.04; 95% CI, 0.95-1.15; P = .37). In the analysis stratified by LMI tertiles, the association of weight-bearing activity with incident osteoarthritis was found only among 431 patients in the lowest LMI tertile (OR, 1.53; 95% CI, 1.15-2.04; P = .003), but not among patients in the middle or high LMI tertile. Conclusions and Relevance: The findings of this study suggest that weight-bearing activity is associated with incident knee osteoarthritis in people with low levels of lower-limb muscle mass, which might be a promising avenue for tailored advice for physical activity.
Asunto(s)
Ejercicio Físico , Osteoartritis de la Rodilla , Soporte de Peso , Humanos , Osteoartritis de la Rodilla/epidemiología , Osteoartritis de la Rodilla/fisiopatología , Osteoartritis de la Rodilla/etiología , Femenino , Masculino , Ejercicio Físico/fisiología , Persona de Mediana Edad , Anciano , Estudios Prospectivos , Países Bajos/epidemiología , Soporte de Peso/fisiología , Factores de Riesgo , Músculo Esquelético/fisiopatología , Músculo Esquelético/diagnóstico por imagen , Extremidad Inferior/fisiopatología , IncidenciaRESUMEN
Background: Epigenome-wide association studies have revealed multiple DNA methylation sites (CpGs) associated with alcohol consumption, an important lifestyle risk factor for cardiovascular diseases. Results: We generated an alcohol consumption epigenetic risk score (ERS) based on previously reported 144 alcohol-associated CpGs and examined the association of the ERS with systolic blood pressure (SBP), diastolic blood pressure (DBP), and hypertension (HTN) in 3,898 Framingham Heart Study (FHS) participants. We found an association of alcohol intake with the ERS in the meta-analysis with 0.09 units higher ERS per drink consumed per day (p < 0.0001). Cross-sectional analyses in FHS revealed that a one-unit increment of the ERS was associated with 1.93 mm Hg higher SBP (p = 4.64E-07), 0.68 mm Hg higher DBP (p = 0.006), and an odds ratio of 1.78 for HTN (p < 2E-16). Meta-analysis of the cross-sectional association of the ERS with BP traits in eight independent external cohorts (n = 11,544) showed similar relationships with blood pressure levels, i.e., a one-unit increase in ERS was associated with 0.74 (p = 0.002) and 0.50 (p = 0.0006) mm Hg higher SBP and DBP, but could not confirm the association with hypertension. Longitudinal analyses in FHS (n = 3,260) and five independent external cohorts (n = 4,021) showed that the baseline ERS was not associated with a change in blood pressure over time or with incident HTN. Conclusions: Our findings provide proof-of-concept that utilizing an ERS is a useful approach to capture the recent health consequences of lifestyle behaviors such as alcohol consumption.
RESUMEN
Genome-wide association analyses using high-throughput metabolomics platforms have led to novel insights into the biology of human metabolism1-7. This detailed knowledge of the genetic determinants of systemic metabolism has been pivotal for uncovering how genetic pathways influence biological mechanisms and complex diseases8-11. Here we present a genome-wide association study for 233 circulating metabolic traits quantified by nuclear magnetic resonance spectroscopy in up to 136,016 participants from 33 cohorts. We identify more than 400 independent loci and assign probable causal genes at two-thirds of these using manual curation of plausible biological candidates. We highlight the importance of sample and participant characteristics that can have significant effects on genetic associations. We use detailed metabolic profiling of lipoprotein- and lipid-associated variants to better characterize how known lipid loci and novel loci affect lipoprotein metabolism at a granular level. We demonstrate the translational utility of comprehensively phenotyped molecular data, characterizing the metabolic associations of intrahepatic cholestasis of pregnancy. Finally, we observe substantial genetic pleiotropy for multiple metabolic pathways and illustrate the importance of careful instrument selection in Mendelian randomization analysis, revealing a putative causal relationship between acetone and hypertension. Our publicly available results provide a foundational resource for the community to examine the role of metabolism across diverse diseases.
Asunto(s)
Biomarcadores , Estudio de Asociación del Genoma Completo , Metabolómica , Femenino , Humanos , Embarazo , Acetona/sangre , Acetona/metabolismo , Biomarcadores/sangre , Biomarcadores/metabolismo , Colestasis Intrahepática/sangre , Colestasis Intrahepática/genética , Colestasis Intrahepática/metabolismo , Estudios de Cohortes , Estudio de Asociación del Genoma Completo/métodos , Hipertensión/sangre , Hipertensión/genética , Hipertensión/metabolismo , Lipoproteínas/genética , Lipoproteínas/metabolismo , Espectroscopía de Resonancia Magnética , Análisis de la Aleatorización Mendeliana , Redes y Vías Metabólicas/genética , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Complicaciones del Embarazo/sangre , Complicaciones del Embarazo/genética , Complicaciones del Embarazo/metabolismoRESUMEN
The Rotterdam Study is a population-based cohort study, started in 1990 in the district of Ommoord in the city of Rotterdam, the Netherlands, with the aim to describe the prevalence and incidence, unravel the etiology, and identify targets for prediction, prevention or intervention of multifactorial diseases in mid-life and elderly. The study currently includes 17,931 participants (overall response rate 65%), aged 40 years and over, who are examined in-person every 3 to 5 years in a dedicated research facility, and who are followed-up continuously through automated linkage with health care providers, both regionally and nationally. Research within the Rotterdam Study is carried out along two axes. First, research lines are oriented around diseases and clinical conditions, which are reflective of medical specializations. Second, cross-cutting research lines transverse these clinical demarcations allowing for inter- and multidisciplinary research. These research lines generally reflect subdomains within epidemiology. This paper describes recent methodological updates and main findings from each of these research lines. Also, future perspective for coming years highlighted.
Asunto(s)
Personal de Salud , Anciano , Humanos , Adulto , Persona de Mediana Edad , Estudios de Cohortes , Países Bajos/epidemiologíaRESUMEN
Osteoarthritis (OA) is a multifactorial degenerative joint disease of which the underlying mechanisms are yet to be fully understood. At the molecular level, multiple factors including altered signaling pathways, epigenetics, metabolic imbalance, extracellular matrix degradation, production of matrix metalloproteinases, and inflammatory cytokines, are known to play a detrimental role in OA. However, these factors do not initiate OA, but are mediators or consequences of the disease, while many other factors causing the etiology of OA are still unknown. Here, it is revealed that microenvironmental osmolarity can induce and reverse osteoarthritis-related behavior of chondrocytes via altered intracellular molecular crowding, which represents a previously unknown mechanism underlying OA pathophysiology. Decreased intracellular crowding is associated with increased sensitivity to proinflammatory triggers and decreased responsiveness to anabolic stimuli. OA-induced lowered intracellular molecular crowding could be renormalized via exposure to higher extracellular osmolarity such as those found in healthy joints, which reverse OA chondrocyte's sensitivity to catabolic stimuli as well as its glycolytic metabolism.
Asunto(s)
Cartílago Articular , Osteoartritis , Humanos , Cartílago Articular/metabolismo , Cartílago Articular/patología , Osteoartritis/metabolismo , Condrocitos/metabolismo , Condrocitos/patología , Citocinas/metabolismo , Concentración OsmolarRESUMEN
Background: Despite the huge burden of hip osteoarthritis (OA) and the lack of effective treatment, research into the primary prevention of hip OA is in its infancy. Purpose: We sought to evaluate risk factors for incident clinical and incident radiographic hip OA among middle-aged and older adults, to evaluate the importance of risk factors from a preventive perspective, and to estimate the percentage of new cases attributable to these risk factors. Methods: We retrospectively reviewed data from the Rotterdam study, an open-population cohort study of individuals aged 55 years or older. Data including baseline age, sex, body mass index, smoking status, education level, diagnosis of diabetes, C-reactive protein (CRP), cam morphology, acetabular dysplasia, radiographic thumb OA, radiographic hip OA, and hip pain were assessed for their association with incident clinical hip OA and incident radiographic hip OA separately, after 11 years of follow-up. The population-attributable fractions (PAFs) of statistically significant modifiable risk factors were calculated, as well. Results: New onset of clinical hip OA was seen in 19.9% (544 of 2729) and incident radiographic hip OA in 9.9% (329 of 3309). Female sex, education level below average (PAF 21.4%), and radiographic hip OA (PAF 3.4%) were statistically significantly associated with incident clinical hip OA. Female sex, age, overweight (PAF 20.0%), cam morphology (PAF 7.9%), acetabular dysplasia (PAF 3.6%), and radiographic thumb OA (PAF 4.7%) were statistically significantly associated with radiographic hip OA. Conclusions: Our retrospective analysis suggests that, from a primary prevention perspective, the most important modifiable risk factors among middle-aged and older individuals may be low educational level for incident clinical hip OA and overweight for incident radiographic hip OA. Further study is warranted.
RESUMEN
Coronary artery calcification (CAC), a measure of subclinical atherosclerosis, predicts future symptomatic coronary artery disease (CAD). Identifying genetic risk factors for CAC may point to new therapeutic avenues for prevention. Currently, there are only four known risk loci for CAC identified from genome-wide association studies (GWAS) in the general population. Here we conducted the largest multi-ancestry GWAS meta-analysis of CAC to date, which comprised 26,909 individuals of European ancestry and 8,867 individuals of African ancestry. We identified 11 independent risk loci, of which eight were new for CAC and five had not been reported for CAD. These new CAC loci are related to bone mineralization, phosphate catabolism and hormone metabolic pathways. Several new loci harbor candidate causal genes supported by multiple lines of functional evidence and are regulators of smooth muscle cell-mediated calcification ex vivo and in vitro. Together, these findings help refine the genetic architecture of CAC and extend our understanding of the biological and potential druggable pathways underlying CAC.
Asunto(s)
Aterosclerosis , Enfermedad de la Arteria Coronaria , Humanos , Aterosclerosis/genética , Población Negra/genética , Enfermedad de la Arteria Coronaria/genética , Estudio de Asociación del Genoma Completo , Factores de Riesgo , Pueblo Europeo/genéticaRESUMEN
BACKGROUND: Type 2 diabetes mellitus (T2D) confers a two- to three-fold increased risk of cardiovascular disease (CVD). However, the mechanisms underlying increased CVD risk among people with T2D are only partially understood. We hypothesized that a genetic association study among people with T2D at risk for developing incident cardiovascular complications could provide insights into molecular genetic aspects underlying CVD. METHODS: From 16 studies of the Cohorts for Heart & Aging Research in Genomic Epidemiology (CHARGE) Consortium, we conducted a multi-ancestry time-to-event genome-wide association study (GWAS) for incident CVD among people with T2D using Cox proportional hazards models. Incident CVD was defined based on a composite of coronary artery disease (CAD), stroke, and cardiovascular death that occurred at least one year after the diagnosis of T2D. Cohort-level estimated effect sizes were combined using inverse variance weighted fixed effects meta-analysis. We also tested 204 known CAD variants for association with incident CVD among patients with T2D. RESULTS: A total of 49,230 participants with T2D were included in the analyses (31,118 European ancestries and 18,112 non-European ancestries) which consisted of 8,956 incident CVD cases over a range of mean follow-up duration between 3.2 and 33.7 years (event rate 18.2%). We identified three novel, distinct genetic loci for incident CVD among individuals with T2D that reached the threshold for genome-wide significance (P<5.0×10-8): rs147138607 (intergenic variant between CACNA1E and ZNF648) with a hazard ratio (HR) 1.23, 95% confidence interval (CI) 1.15 - 1.32, P=3.6×10-9, rs11444867 (intergenic variant near HS3ST1) with HR 1.89, 95% CI 1.52 - 2.35, P=9.9×10-9, and rs335407 (intergenic variant between TFB1M and NOX3) HR 1.25, 95% CI 1.16 - 1.35, P=1.5×10-8. Among 204 known CAD loci, 32 were associated with incident CVD in people with T2D with P<0.05, and 5 were significant after Bonferroni correction (P<0.00024, 0.05/204). A polygenic score of these 204 variants was significantly associated with incident CVD with HR 1.14 (95% CI 1.12 - 1.16) per 1 standard deviation increase (P=1.0×10-16). CONCLUSIONS: The data point to novel and known genomic regions associated with incident CVD among individuals with T2D.
RESUMEN
BACKGROUND: Hip minimum joint space width (mJSW) provides a proxy for cartilage thickness. This study aimed to conduct a genome-wide association study (GWAS) of mJSW to (i) identify new genetic determinants of mJSW and (ii) identify which mJSW loci convey hip osteoarthritis (HOA) risk and would therefore be of therapeutic interest. METHODS: GWAS meta-analysis of hip mJSW derived from plain X-rays and DXA was performed, stratified by sex and adjusted for age and ancestry principal components. Mendelian randomisation (MR) and cluster analyses were used to examine causal effect of mJSW on HOA. FINDINGS: 50,745 individuals were included in the meta-analysis. 42 SNPs, which mapped to 39 loci, were identified. Mendelian randomisation (MR) revealed little evidence of a causal effect of mJSW on HOA (ORIVW 0.98 [95% CI 0.82-1.18]). However, MR-Clust analysis suggested the null MR estimates reflected the net effect of two distinct causal mechanisms cancelling each other out, one of which was protective, whereas the other increased HOA susceptibility. For the latter mechanism, all loci were positively associated with height, suggesting mechanisms leading to greater height and mJSW increase the risk of HOA in later life. INTERPRETATIONS: One group of mJSW loci reduce HOA risk via increased mJSW, suggesting possible utility as targets for chondroprotective therapies. The second group of mJSW loci increased HOA risk, despite increasing mJSW, but were also positively related to height, suggesting they contribute to HOA risk via a growth-related mechanism. FUNDING: Primarily funded by the Medical Research Council and Wellcome Trust.
Asunto(s)
Estudio de Asociación del Genoma Completo , Osteoartritis de la Cadera , Humanos , Osteoartritis de la Cadera/diagnóstico por imagen , Osteoartritis de la Cadera/genética , Articulaciones , Análisis por Conglomerados , Análisis de la Aleatorización MendelianaRESUMEN
Biological age captures a person's age-related risk of unfavorable outcomes using biophysiological information. Multivariate biological age measures include frailty scores and molecular biomarkers. These measures are often studied in isolation, but here we present a large-scale study comparing them. In 2 prospective cohorts (n = 3 222), we compared epigenetic (DNAm Horvath, DNAm Hannum, DNAm Lin, DNAm epiTOC, DNAm PhenoAge, DNAm DunedinPoAm, DNAm GrimAge, and DNAm Zhang) and metabolomic-based (MetaboAge and MetaboHealth) biomarkers in reflection of biological age, as represented by 5 frailty measures and overall mortality. Biomarkers trained on outcomes with biophysiological and/or mortality information outperformed age-trained biomarkers in frailty reflection and mortality prediction. DNAm GrimAge and MetaboHealth, trained on mortality, showed the strongest association with these outcomes. The associations of DNAm GrimAge and MetaboHealth with frailty and mortality were independent of each other and of the frailty score mimicking clinical geriatric assessment. Epigenetic, metabolomic, and clinical biological age markers seem to capture different aspects of aging. These findings suggest that mortality-trained molecular markers may provide novel phenotype reflecting biological age and strengthen current clinical geriatric health and well-being assessment.
Asunto(s)
Fragilidad , Humanos , Anciano , Fragilidad/genética , Estudios Prospectivos , Biomarcadores , Envejecimiento/genética , Epigénesis Genética , Metilación de ADNRESUMEN
BACKGROUND: Advanced glycation end products (AGEs) are involved in age-related diseases, but the interaction of gut microbiota with dietary AGEs (dAGEs) and tissue AGEs in the population is unknown. OBJECTIVE: Our objective was to investigate the association of dietary and tissue AGEs with gut microbiota in the population-based Rotterdam Study, using skin AGEs as a marker for tissue accumulation and stool microbiota as a surrogate for gut microbiota. DESIGN: Dietary intake of three AGEs (dAGEs), namely carboxymethyl-lysine (CML), N-(5-hydro-5-methyl-4-imidazolon-2-yl)-ornithine (MGH1), and carboxyethyl-lysine (CEL), was quantified at baseline from food frequency questionnaires. Following up after a median of 5.7 years, skin AGEs were measured using skin autofluorescence (SAF), and stool microbiota samples were sequenced (16S rRNA) to measure microbial composition (including alpha-diversity, beta-dissimilarity, and taxonomic abundances) as well as predict microbial metabolic pathways. Associations of both dAGEs and SAF with microbial measures were investigated using multiple linear regression models in 1052 and 718 participants, respectively. RESULTS: dAGEs and SAF were not associated with either the alpha-diversity or beta-dissimilarity of the stool microbiota. After multiple-testing correction, dAGEs were not associated with any of the 188 genera tested, but were nominally inversely associated with the abundance of Barnesiella, Colidextribacter, Oscillospiraceae UCG-005, and Terrisporobacter, in addition to being positively associated with Coprococcus, Dorea, and Blautia. A higher abundance of Lactobacillus was associated with a higher SAF, along with several nominally significantly associated genera. dAGEs and SAF were nominally associated with several microbial pathways, but none were statistically significant after multiple-testing correction. CONCLUSIONS: Our findings did not solidify a link between habitual dAGEs, skin AGEs, and overall stool microbiota composition. Nominally significant associations with several genera and functional pathways suggested a potential interaction between gut microbiota and AGE metabolism, but validation is required. Future studies are warranted, to investigate whether gut microbiota modifies the potential impact of dAGEs on health.