Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 163
Filtrar
1.
J Histochem Cytochem ; 72(5): 329-352, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38733294

RESUMEN

Lactate and ATP formation by aerobic glycolysis, the Warburg effect, is considered a hallmark of cancer. During angiogenesis in non-cancerous tissue, proliferating stalk endothelial cells (ECs) also produce lactate and ATP by aerobic glycolysis. In fact, all proliferating cells, both non-cancer and cancer cells, need lactate for the biosynthesis of building blocks for cell growth and tissue expansion. Moreover, both non-proliferating cancer stem cells in tumors and leader tip ECs during angiogenesis rely on glycolysis for pyruvate production, which is used for ATP synthesis in mitochondria through oxidative phosphorylation (OXPHOS). Therefore, aerobic glycolysis is not a specific hallmark of cancer but rather a hallmark of proliferating cells and limits its utility in cancer therapy. However, local treatment of angiogenic eye conditions with inhibitors of glycolysis may be a safe therapeutic option that warrants experimental investigation. Most types of cells in the eye such as photoreceptors and pericytes use OXPHOS for ATP production, whereas proliferating angiogenic stalk ECs rely on glycolysis for lactate and ATP production. (J Histochem Cytochem XX.XXX-XXX, XXXX).


Asunto(s)
Adenosina Trifosfato , Neoplasias , Neovascularización Patológica , Humanos , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/biosíntesis , Neoplasias/metabolismo , Neoplasias/patología , Neoplasias/irrigación sanguínea , Neoplasias/tratamiento farmacológico , Animales , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Glucólisis , Oftalmopatías/metabolismo , Oftalmopatías/patología , Fosforilación Oxidativa
2.
J Histochem Cytochem ; 72(4): 199-231, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38590114

RESUMEN

The large family of transient receptor potential (TRP) channels are integral membrane proteins that function as environmental sensors and act as ion channels after activation by mechanical (touch), physical (heat, pain), and chemical stimuli (pungent compounds such as capsaicin). Most TRP channels are localized in the plasma membrane of cells but some of them are localized in membranes of organelles and function as intracellular Ca2+-ion channels. TRP channels are involved in neurological disorders but their precise role(s) and relevance in these disorders are not clear. Endothelial cells of the blood-brain barrier (BBB) express TRP channels such as TRP vanilloid 1-4 and are involved in thermal detection by regulating BBB permeability. In neurological disorders, TRP channels in the BBB are responsible for edema formation in the brain. Therefore, drug design to modulate locally activity of TRP channels in the BBB is a hot topic. Today, the application of TRP channel antagonists against neurological disorders is still limited.


Asunto(s)
Enfermedades del Sistema Nervioso , Canales de Potencial de Receptor Transitorio , Humanos , Canales de Potencial de Receptor Transitorio/metabolismo , Barrera Hematoencefálica , Células Endoteliales/metabolismo , Canales Catiónicos TRPV
3.
J Histochem Cytochem ; 72(3): 157-171, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38440794

RESUMEN

Skin sensitivity and impaired epidermal barrier function are associated with aging and are at least partly due to increased production of reactive oxygen species (ROS). Transient receptor potential vanilloid1 (TRPV1) is expressed in keratinocytes, fibroblasts, mast cells, and endothelial cells in skin. We investigated in skin biopsies of adult and elderly donors whether TRPV1 expression is involved in the skin aging process. We found that aging skin showed a strongly reduced epidermal thickness, strongly increased oxidative stress, protease expression, and mast cell degranulation and strongly increased TRPV1 expression both in epidermis and dermis. Based on our findings, the aging-related changes observed in the epidermis of the skin level are associated with increased ROS production, and hypothesized alterations in TRPV1 expression are mechanistically linked to this process.


Asunto(s)
Células Endoteliales , Piel , Adulto , Anciano , Humanos , Envejecimiento , Células Endoteliales/metabolismo , Epidermis , Queratinocitos , Especies Reactivas de Oxígeno/metabolismo , Piel/metabolismo
4.
Int J Mol Sci ; 25(2)2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38256159

RESUMEN

Autism spectrum disorder (ASD) is a complicated neurodevelopmental disorder, and its etiology is not well understood. It is known that genetic and nongenetic factors determine alterations in several organs, such as the liver, in individuals with this disorder. The aims of the present study were to analyze morphological and biological alterations in the liver of an autistic mouse model, BTBR T + Itpr3tf/J (BTBR) mice, and to identify therapeutic strategies for alleviating hepatic impairments using melatonin administration. We studied hepatic cytoarchitecture, oxidative stress, inflammation and ferroptosis in BTBR mice and used C57BL6/J mice as healthy control subjects. The mice were divided into four groups and then treated and not treated with melatonin, respectively. BTBR mice showed (a) a retarded development of livers and (b) iron accumulation and elevated oxidative stress and inflammation. We demonstrated that the expression of ferroptosis markers, the transcription factor nuclear factor erythroid-related factor 2 (NFR2), was upregulated, and the Kelch-like ECH-associated protein 1 (KEAP1) was downregulated in BTBR mice. Then, we evaluated the effects of melatonin on the hepatic alterations of BTBR mice; melatonin has a positive effect on liver cytoarchitecture and metabolic functions.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Ferroptosis , Melatonina , Humanos , Animales , Ratones , Trastorno Autístico/tratamiento farmacológico , Trastorno Autístico/genética , Proteína 1 Asociada A ECH Tipo Kelch , Melatonina/farmacología , Melatonina/uso terapéutico , Trastorno del Espectro Autista/tratamiento farmacológico , Trastorno del Espectro Autista/genética , Factor 2 Relacionado con NF-E2/genética , Hígado , Inflamación/tratamiento farmacológico , Estrés Oxidativo , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL
5.
Sci Rep ; 13(1): 21436, 2023 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-38052807

RESUMEN

Vascular endothelial growth factor (VEGF)-A induces endothelial hyperpermeability, but the molecular pathways remain incompletely understood. Endothelial nitric oxide synthase (eNOS) regulates acute effects of VEGF-A on permeability of endothelial cells (ECs), but it remains unknown whether and how eNOS regulates late effects of VEGF-A-induced hyperpermeability. Here we show that VEGF-A induces hyperpermeability via eNOS-dependent and eNOS-independent mechanisms at 2 days after VEGF-A stimulation. Silencing of expression of the eNOS gene (NOS3) reduced VEGF-A-induced permeability for dextran (70 kDa) and 766 Da-tracer in human dermal microvascular ECs (HDMVECs), but not in human retinal microvascular ECs (HRECs) and human umbilical vein ECs (HUVECs). However, silencing of NOS3 expression in HRECs increased permeability to dextran, BSA and 766 Da-tracer in the absence of VEGF-A stimulation, suggesting a barrier-protective function of eNOS. We also investigated how silencing of NOS3 expression regulates the expression of permeability-related transcripts, and found that NOS3 silencing downregulates the expression of PLVAP, a molecule associated with trans-endothelial transport via caveolae, in HDMVECs and HUVECs, but not in HRECs. Our findings underscore the complexity of VEGF-A-induced permeability pathways in ECs and the role of eNOS therein, and demonstrate that different pathways are activated depending on the EC phenotype.


Asunto(s)
Óxido Nítrico Sintasa de Tipo III , Factor A de Crecimiento Endotelial Vascular , Humanos , Caveolas/metabolismo , Células Cultivadas , Dextranos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/farmacología
6.
J Histochem Cytochem ; 71(6): 345-346, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37309721

RESUMEN

This article comments on the significance of a highly cited review article on DNA cytochemical quantitation that was published in the Journal of Histochemistry and Cytochemistry in 2002 (David C. Hardie, T. Ryan Gregory, and Paul D.N. Hebert. From pixels to picograms: A beginners' guide to genome quantification by Feulgen image analysis densitometry.


Asunto(s)
ADN , ADN/análisis , Histocitoquímica
7.
Cancers (Basel) ; 14(24)2022 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-36551714

RESUMEN

Mutations in the isocitrate dehydrogenase 1 (IDH1MUT) gene occur in various types of malignancies, including ~60% of chondrosarcomas, ~30% of intrahepatic cholangiocarcinomas and >80% of low-grade gliomas. IDH1MUT are causal in the development and progression of these types of cancer due to neomorphic production of the oncometabolite D-2-hydroxyglutarate (D-2HG). Intracellular accumulation of D-2HG has been implicated in suppressing homologous recombination and renders IDH1MUT cancer cells sensitive to DNA-repair-inhibiting agents, such as poly-(adenosine 5'-diphosphate−ribose) polymerase inhibitors (PARPi). Hyperthermia increases the efficacy of DNA-damaging therapies such as radiotherapy and platinum-based chemotherapy, mainly by inhibition of DNA repair. In the current study, we investigated the additional effects of hyperthermia (42 °C for 1 h) in the treatment of IDH1MUT HCT116 colon cancer cells and hyperthermia1080 chondrosarcoma cancer cells in combination with radiation, cisplatin and/or a PARPi on clonogenic cell survival, cell cycle distribution and the induction and repair of DNA double-strand breaks. We found that hyperthermia in combination with radiation or cisplatin induces an increase in double-strand breaks and cell death, up to 10-fold in IDH1MUT cancer cells compared to IDH1 wild-type cells. This vulnerability was abolished by the IDH1MUT inhibitor AGI-5198 and was further increased by the PARPi. In conclusion, our study shows that IDH1MUT cancer cells are sensitized to hyperthermia in combination with irradiation or cisplatin and a PARPi. Therefore, hyperthermia may be an efficacious sensitizer to cytotoxic therapies in tumors where the clinical application of hyperthermia is feasible, such as IDH1MUT chondrosarcoma of the extremities.

8.
J Histochem Cytochem ; 70(8): 557-569, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35876388

RESUMEN

Endothelial cells (ECs) form a precisely regulated polarized monolayer in capillary walls. Vascular endothelial growth factor-A (VEGF-A) induces endothelial hyperpermeability, and VEGF-A applied to the basolateral side, but not the apical side, has been shown to be a strong barrier disruptor in blood-retinal barrier ECs. We show here that VEGF-A presented to the basolateral side of human umbilical vein ECs (HUVECs) induces higher permeability than apical stimulation, which is similar to results obtained with bovine retinal ECs. We investigated with immunocytochemistry and confocal imaging the distribution of VEGF receptor-2 (VEGFR2) and neuropilin-2 (NRP2) in perinuclear apical and basolateral membrane domains. Orthogonal z-sections of cultured HUVECs were obtained, and the fluorescence intensity at the apical and basolateral membrane compartments was measured. We found that VEGFR2 and NRP2 are evenly distributed throughout perinuclear apical and basolateral membrane compartments in unstimulated HUVECs grown on Transwell inserts, whereas basolateral VEGF-A stimulation induces a shift toward basolateral VEGFR2 and NRP2 localization. When HUVECs were grown on coverslips, the distribution of VEGFR2 and NRP2 across the perinuclear apical and basolateral membrane domains was different. Our findings demonstrate that HUVECs dynamically regulate VEGFR2 and NRP2 localization on membrane microdomains, depending on growth conditions and the polarity of VEGF-A stimulation.


Asunto(s)
Neuropilina-2 , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Animales , Bovinos , Membrana Celular/metabolismo , Células Cultivadas , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Neuropilina-2/metabolismo , Retina/metabolismo
10.
J Histochem Cytochem ; 70(1): 29-51, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34714696

RESUMEN

Energy production by means of ATP synthesis in cancer cells has been investigated frequently as a potential therapeutic target in this century. Both (an)aerobic glycolysis and oxidative phosphorylation (OXPHOS) have been studied. Here, we review recent literature on energy production in glioblastoma stem cells (GSCs) and leukemic stem cells (LSCs) versus their normal counterparts, neural stem cells (NSCs) and hematopoietic stem cells (HSCs), respectively. These two cancer stem cell types were compared because their niches in glioblastoma tumors and in bone marrow are similar. In this study, it became apparent that (1) ATP is produced in NSCs and HSCs by anaerobic glycolysis, whereas fatty acid oxidation (FAO) is essential for their stem cell fate and (2) ATP is produced in GSCs and LSCs by OXPHOS despite the hypoxic conditions in their niches with FAO and amino acids providing its substrate. These metabolic processes appeared to be under tight control of cellular regulation mechanisms which are discussed in depth. However, our conclusion is that systemic therapeutic targeting of ATP production via glycolysis or OXPHOS is not an attractive option because of its unwanted side effects in cancer patients.


Asunto(s)
Médula Ósea/metabolismo , Encéfalo/metabolismo , Células Madre Neoplásicas/metabolismo , Células Madre/metabolismo , Médula Ósea/patología , Encéfalo/patología , Biología Celular , Glucólisis , Humanos , Células Madre Neoplásicas/patología , Fosforilación , Células Madre/patología
11.
Cancers (Basel) ; 13(10)2021 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-34069550

RESUMEN

BACKGROUND: Mutations in isocitrate dehydrogenase 1 (IDH1) occur in 60% of chondrosarcoma, 80% of WHO grade II-IV glioma and 20% of intrahepatic cholangiocarcinoma. These solid IDH1-mutated tumors produce the oncometabolite D-2-hydroxyglutarate (D-2HG) and are more vulnerable to disruption of their metabolism. METHODS: Patients with IDH1-mutated chondrosarcoma, glioma and intrahepatic cholangiocarcinoma received oral combinational treatment with the antidiabetic drug metformin and the antimalarial drug chloroquine. The primary objective was to determine the occurrence of dose-limiting toxicities (DLTs) and the maximum tolerated dose (MTD). Radiological and biochemical tumor responses to metformin and chloroquine were investigated using CT/MRI scans and magnetic resonance spectroscopy (MRS) measurements of D-2HG levels in serum. RESULTS: Seventeen patients received study treatment for a median duration of 43 days (range: 7-74 days). Of twelve evaluable patients, 10 patients discontinued study medication because of progressive disease and two patients due to toxicity. None of the patients experienced a DLT. The MTD was determined to be 1500 mg of metformin two times a day and 200 mg of chloroquine once a day. A serum D/L-2HG ratio of ≥4.5 predicted the presence of an IDH1 mutation with a sensitivity of 90% and a specificity of 100%. By utilization of digital droplet PCR on plasma samples, we were able to detect tumor-specific IDH1 hotspot mutations in circulating tumor DNA (ctDNA) in investigated patients. CONCLUSION: Treatment of advanced IDH1-mutated solid tumors with metformin and chloroquine was well tolerated but did not induce a clinical response in this phase Ib clinical trial.

12.
Cells ; 10(3)2021 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-33810170

RESUMEN

Cancer is a redox disease. Low levels of reactive oxygen species (ROS) are beneficial for cells and have anti-cancer effects. ROS are produced in the mitochondria during ATP production by oxidative phosphorylation (OXPHOS). In the present review, we describe ATP production in primary brain tumors, glioblastoma, in relation to ROS production. Differentiated glioblastoma cells mainly use glycolysis for ATP production (aerobic glycolysis) without ROS production, whereas glioblastoma stem cells (GSCs) in hypoxic periarteriolar niches use OXPHOS for ATP and ROS production, which is modest because of the hypoxia and quiescence of GSCs. In a significant proportion of glioblastoma, isocitrate dehydrogenase 1 (IDH1) is mutated, causing metabolic rewiring, and all cancer cells use OXPHOS for ATP and ROS production. Systemic therapeutic inhibition of glycolysis is not an option as clinical trials have shown ineffectiveness or unwanted side effects. We argue that systemic therapeutic inhibition of OXPHOS is not an option either because the anti-cancer effects of ROS production in healthy cells is inhibited as well. Therefore, we advocate to remove GSCs out of their hypoxic niches by the inhibition of their binding to niches to enable their differentiation and thus increase their sensitivity to radiotherapy and/or chemotherapy.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias Encefálicas/enzimología , Metabolismo Energético , Glioblastoma/enzimología , Isocitrato Deshidrogenasa/metabolismo , Células Madre Neoplásicas/enzimología , Animales , Antineoplásicos/uso terapéutico , Biomarcadores de Tumor/genética , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Metabolismo Energético/efectos de los fármacos , Predisposición Genética a la Enfermedad , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glioblastoma/patología , Humanos , Isocitrato Deshidrogenasa/genética , Terapia Molecular Dirigida , Mutación , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/patología , Fenotipo , Especies Reactivas de Oxígeno/metabolismo , Efecto Warburg en Oncología
13.
Cells ; 10(4)2021 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-33923753

RESUMEN

During angiogenesis, vascular endothelial growth factor A (VEGFA) regulates endothelial cell (EC) survival, tip cell formation, and stalk cell proliferation via VEGF receptor 2 (VEGFR2). VEGFR2 can interact with VEGFR2 co-receptors such as heparan sulfate proteoglycans (HSPGs) and neuropilin 2 (NRP2), but the exact roles of these co-receptors, or of sulfatase 2 (SULF2), an enzyme that removes sulfate groups from HSPGs and inhibits HSPG-mediated uptake of very low density lipoprotein (VLDL), in angiogenesis and tip cell biology are unknown. In the present study, we investigated whether the modulation of binding of VEGFA to VEGFR2 by knockdown of SULF2 or NRP2 affects sprouting angiogenesis, tip cell formation, proliferation of non-tip cells, and EC survival, or uptake of VLDL. To this end, we employed VEGFA splice variant 121, which lacks an HSPG binding domain, and VEGFA splice variant 165, which does have this domain, in in vitro models of angiogenic tip cells and vascular sprouting. We conclude that VEGFA165 and VEGFA121 have similar inducing effects on tip cells and sprouting in vitro, and that the binding of VEGFA165 to HSPGs in the extracellular matrix does not seem to play a role, as knockdown of SULF2 did not alter these effects. Co-binding of NRP2 appears to regulate VEGFA-VEGFR2-induced sprout initiation, but not tip cell formation. Finally, as the addition of VLDL increased sprout formation but not tip cell formation, and as VLDL uptake was limited to non-tip cells, our findings suggest that VLDL plays a role in sprout formation by providing biomass for stalk cell proliferation.


Asunto(s)
Heparitina Sulfato/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Neovascularización Fisiológica , Neuropilina-2/metabolismo , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/metabolismo , Apoptosis , Humanos , Lipoproteínas VLDL/metabolismo , Sulfatasas/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
14.
J Histochem Cytochem ; 69(5): 349-364, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33596115

RESUMEN

Glioblastoma usually recurs after therapy consisting of surgery, radiotherapy, and chemotherapy. Recurrence is at least partly caused by glioblastoma stem cells (GSCs) that are maintained in intratumoral hypoxic peri-arteriolar microenvironments, or niches, in a slowly dividing state that renders GSCs resistant to radiotherapy and chemotherapy. Because the subventricular zone (SVZ) is a major niche for neural stem cells (NSCs) in the brain, we investigated whether GSCs are present in the SVZ at distance from the glioblastoma tumor. We characterized the SVZ of brains of seven glioblastoma patients using fluorescence immunohistochemistry and image analysis. NSCs were identified by CD133 and SOX2 but not CD9 expression, whereas GSCs were positive for all three biomarkers. NSCs were present in all seven samples and GSCs in six out of seven samples. The SVZ in all samples were hypoxic and expressed the same relevant chemokines and their receptors as GSC niches in glioblastoma tumors: stromal-derived factor-1α (SDF-1α), C-X-C receptor type 4 (CXCR4), osteopontin, and CD44. In conclusion, in glioblastoma patients, GSCs are present at distance from the glioblastoma tumor in the SVZ. These findings suggest that GSCs in the SVZ niche are protected against radiotherapy and chemotherapy and protected against surgical resection due to their distant localization and thus may contribute to tumor recurrence after therapy.


Asunto(s)
Neoplasias Encefálicas/patología , Glioblastoma/patología , Células Madre Neoplásicas/patología , Células-Madre Neurales/patología , Nicho de Células Madre , Biomarcadores de Tumor/metabolismo , Humanos , Inmunohistoquímica , Transducción de Señal , Microambiente Tumoral
15.
Biochim Biophys Acta Rev Cancer ; 1875(1): 188446, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33058997

RESUMEN

Angiogenesis is required in cancer, including gynecological cancers, for the growth of primary tumors and secondary metastases. Development of anti-angiogenesis therapy in gynecological cancers and improvement of its efficacy have been a major focus of fundamental and clinical research. However, survival benefits of current anti-angiogenic agents, such as bevacizumab, in patients with gynecological cancer, are modest. Therefore, a better understanding of angiogenesis and the tumor microenvironment in gynecological cancers is urgently needed to develop more effective anti-angiogenic therapies, either or not in combination with other therapeutic approaches. We describe the molecular aspects of (tumor) blood vessel formation and the tumor microenvironment and provide an extensive clinical overview of current anti-angiogenic therapies for gynecological cancers. We discuss the different phenotypes of angiogenic endothelial cells as potential therapeutic targets, strategies aimed at intervention in their metabolism, and approaches targeting their (inflammatory) tumor microenvironment.


Asunto(s)
Inhibidores de la Angiogénesis/uso terapéutico , Neoplasias de los Genitales Femeninos/tratamiento farmacológico , Neovascularización Patológica/tratamiento farmacológico , Microambiente Tumoral/efectos de los fármacos , Femenino , Neoplasias de los Genitales Femeninos/inmunología , Neoplasias de los Genitales Femeninos/patología , Humanos , Inmunoterapia , Neovascularización Patológica/inmunología , Neovascularización Patológica/patología , Microambiente Tumoral/inmunología
16.
Mol Biol Rep ; 47(4): 2561-2572, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32133604

RESUMEN

PURPOSE: We have previously identified insulin-like growth factor 2 (IGF2) and insulin-like growth factor 1 receptor (IGF1R) as essential proteins for tip cell maintenance and sprouting angiogenesis. In this study, we aim to identify other IGF family members involved in endothelial sprouting angiogenesis. METHODS: Effects on sprouting were analyzed in human umbilical vein endothelial cells (HUVECs) using the spheroid-based sprouting model, and were quantified as mean number of sprouts per spheroid and average sprout length. RNA silencing technology was used to knockdown gene expression. Recombinant forms of the ligands (IGF1 and IGF2, insulin) and the IGF-binding proteins (IGFBP) 3 and 4 were used to induce excess effects. Effects on the tip cell phenotype were analyzed by measuring the fraction of CD34+ tip cells using flow cytometry and immunohistochemistry in a 3D angiogenesis model. Experiments were performed in the presence and absence of serum. RESULTS: Knockdown of IGF2 inhibited sprouting in HUVECs, in particular when cultured in the absence of serum, suggesting that components in serum influence the signaling of IGF2 in angiogenesis in vitro. We then determined the effects of IGFBP3 and IGFBP4, which are both present in serum, on IGF2-IGF1R signaling in sprouting angiogenesis in the absence of serum: knockdown of IGFBP3 significantly reduced sprouting angiogenesis, whereas knockdown of IGFBP4 resulted in increased sprouting angiogenesis in both flow cytometry analysis and immunohistochemical analysis of the 3D angiogenesis model. Other IGF family members except INSR did not affect IGF2-IGF1R signaling. CONCLUSIONS: Serum components and IGF binding proteins regulate IGF2 effects on sprouting angiogenesis. Whereas IGFBP3 acts as co-factor for IGF2-IGF1R binding, IGFBP4 inhibits IGF2 signaling.


Asunto(s)
Inductores de la Angiogénesis/metabolismo , Proteína 3 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Proteína 4 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Línea Celular Tumoral , Técnicas de Silenciamiento del Gen , Células Endoteliales de la Vena Umbilical Humana , Humanos , Proteína 3 de Unión a Factor de Crecimiento Similar a la Insulina/fisiología , Proteína 4 de Unión a Factor de Crecimiento Similar a la Insulina/fisiología , Factor I del Crecimiento Similar a la Insulina , Factor II del Crecimiento Similar a la Insulina , Morfogénesis , Neovascularización Patológica/metabolismo , Organoides/metabolismo , Receptor IGF Tipo 1 , Receptor IGF Tipo 2 , Transducción de Señal
17.
Acta Obstet Gynecol Scand ; 99(8): 983-993, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32108320

RESUMEN

Low-lying placentas, placenta previa and abnormally invasive placentas are the most frequently occurring placental abnormalities in location and anatomy. These conditions can have serious consequences for mother and fetus mainly due to excessive blood loss before, during or after delivery. The incidence of such abnormalities is increasing, but treatment options and preventive strategies are limited. Therefore, it is crucial to understand the etiology of placental abnormalities in location and anatomy. Placental formation already starts at implantation and therefore disorders during implantation may cause these abnormalities. Understanding of the normal placental structure and development is essential to comprehend the etiology of placental abnormalities in location and anatomy, to diagnose the affected women and to guide future research for treatment and preventive strategies. We reviewed the literature on the structure and development of the normal placenta and the placental development resulting in low-lying placentas, placenta previa and abnormally invasive placentas.


Asunto(s)
Enfermedades Placentarias/fisiopatología , Enfermedades Placentarias/terapia , Adulto , Femenino , Humanos , Embarazo
18.
Biology (Basel) ; 9(2)2020 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-32079173

RESUMEN

Glioblastoma is the most aggressive and malignant primary brain tumor in adults and has a poor patient survival of only 20 months after diagnosis. This poor patient survival is at least partly caused by glioblastoma stem cells (GSCs), which are slowly-dividing and therefore therapy-resistant. GSCs are localized in protective hypoxic peri-arteriolar niches where these aforementioned stemness properties are maintained. We previously showed that hypoxic peri-arteriolar GSC niches in human glioblastoma are functionally similar to hypoxic peri-arteriolar hematopoietic stem cell (HSC) niches in human bone marrow. GSCs and HSCs express the receptor C-X-C receptor type 4 (CXCR4), which binds to the chemoattractant stromal-derived factor-1α (SDF-1α), which is highly expressed in GSC niches in glioblastoma and HSC niches in bone marrow. This receptor-ligand interaction retains the GSCs/HSCs in their niches and thereby maintains their slowly-dividing state. In acute myeloid leukemia (AML), leukemic cells use the SDF-1α-CXCR4 interaction to migrate to HSC niches and become slowly-dividing and therapy-resistant leukemic stem cells (LSCs). In this communication, we aim to elucidate how disruption of the SDF-1α-CXCR4 interaction using the FDA-approved CXCR4 inhibitor plerixafor (AMD3100) may be used to force slowly-dividing cancer stem cells out of their niches in glioblastoma and AML. Ultimately, this strategy aims to induce GSC and LSC differentiation and their sensitization to therapy.

19.
Curr Treat Options Oncol ; 21(2): 17, 2020 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-32025928

RESUMEN

OPINION STATEMENT: Cancer-related fatigue (CRF) is a problem for a significant proportion of cancer survivors during and after active cancer treatment. However, CRF is underdiagnosed and undertreated. Interventions are available for CRF although there is no gold standard. Based on current level of evidence, exercise seems to be most effective in preventing or ameliorating CRF during the active- and posttreatment phases.


Asunto(s)
Fatiga/etiología , Fatiga/terapia , Neoplasias/complicaciones , Factores de Edad , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Supervivientes de Cáncer , Toma de Decisiones Clínicas , Terapia Combinada , Comorbilidad , Manejo de la Enfermedad , Susceptibilidad a Enfermedades , Fatiga/diagnóstico , Fatiga/epidemiología , Humanos , Neoplasias/diagnóstico , Neoplasias/epidemiología , Prevalencia , Radioterapia/efectos adversos , Radioterapia/métodos , Factores de Riesgo , Supervivencia , Resultado del Tratamiento
20.
Clin Exp Metastasis ; 37(2): 293-304, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32008138

RESUMEN

Most women with epithelial ovarian cancer (EOC) suffer from peritoneal carcinomatosis upon first clinical presentation. Extensive peritoneal carcinomatosis has a poor prognosis and its pathophysiology is not well understood. Although treatment with systemic intravenous chemotherapy is often initially successful, peritoneal recurrences occur regularly. We hypothesized that insufficient or poorly-perfused microvasculature may impair the therapeutic efficacy of systemic intravenous chemotherapy but may also limit expansive and invasive growth characteristic of peritoneal EOC metastases. In 23 patients with advanced EOC or suspicion thereof, we determined the angioarchitecture and perfusion of the microvasculature in peritoneum and in peritoneal metastases using incident dark field (IDF) imaging. Additionally, we performed immunohistochemical analysis and 3-dimensional (3D) whole tumor imaging using light sheet fluorescence microscopy of IDF-imaged tissue sites. In all metastases, microvasculature was present but the angioarchitecture was chaotic and the vessel density and perfusion of vessels was significantly lower than in unaffected peritoneum. Immunohistochemical analysis showed expression of vascular endothelial growth factor and hypoxia inducible factor 1α, and 3D imaging demonstrated vascular continuity between metastases and the vascular network of the peritoneum beneath the elastic lamina of the peritoneum. We conclude that perfusion of the microvasculature within metastases is limited, which may cause hypoxia, affect the behavior of EOC metastases on the peritoneum and limit the response of EOC metastases to systemic treatment.


Asunto(s)
Carcinoma Epitelial de Ovario/irrigación sanguínea , Microvasos/diagnóstico por imagen , Neoplasias Ováricas/terapia , Neoplasias Peritoneales/irrigación sanguínea , Peritoneo/patología , Anciano , Anciano de 80 o más Años , Antineoplásicos/uso terapéutico , Carcinoma Epitelial de Ovario/secundario , Carcinoma Epitelial de Ovario/terapia , Hipoxia de la Célula , Quimioterapia Adyuvante , Procedimientos Quirúrgicos de Citorreducción , Femenino , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/análisis , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Imagenología Tridimensional , Inmunohistoquímica , Microvasos/patología , Persona de Mediana Edad , Terapia Neoadyuvante , Neoplasias Ováricas/patología , Ovariectomía , Ovario/patología , Ovario/cirugía , Neoplasias Peritoneales/prevención & control , Neoplasias Peritoneales/secundario , Peritoneo/irrigación sanguínea , Estudios Prospectivos , Resultado del Tratamiento , Factor A de Crecimiento Endotelial Vascular/análisis , Factor A de Crecimiento Endotelial Vascular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA