Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Mar Drugs ; 21(2)2023 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-36827136

RESUMEN

Despite low temperatures, poor nutrient levels and high pressure, microorganisms thrive in deep-sea environments of polar regions. The adaptability to such extreme environments renders deep-sea microorganisms an encouraging source of novel, bioactive secondary metabolites. In this study, we isolated 77 microorganisms collected by a remotely operated vehicle from the seafloor in the Fram Strait, Arctic Ocean (depth of 2454 m). Thirty-two bacteria and six fungal strains that represented the phylogenetic diversity of the isolates were cultured using an One-Strain-Many-Compounds (OSMAC) approach. The crude EtOAc extracts were tested for antimicrobial and anticancer activities. While antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) and Enterococcus faecium was common for many isolates, only two bacteria displayed anticancer activity, and two fungi inhibited the pathogenic yeast Candida albicans. Due to bioactivity against C. albicans and rich chemical diversity based on molecular network-based untargeted metabolomics, Aspergillus versicolor PS108-62 was selected for an in-depth chemical investigation. A chemical work-up of the SPE-fractions of its dichloromethane subextract led to the isolation of a new PKS-NRPS hybrid macrolactone, versicolide A (1), a new quinazoline (-)-isoversicomide A (3), as well as three known compounds, burnettramic acid A (2), cyclopenol (4) and cyclopenin (5). Their structures were elucidated by a combination of HRMS, NMR, [α]D, FT-IR spectroscopy and computational approaches. Due to the low amounts obtained, only compounds 2 and 4 could be tested for bioactivity, with 2 inhibiting the growth of C. albicans (IC50 7.2 µg/mL). These findings highlight, on the one hand, the vast potential of the genus Aspergillus to produce novel chemistry, particularly from underexplored ecological niches such as the Arctic deep sea, and on the other, the importance of untargeted metabolomics for selection of marine extracts for downstream chemical investigations.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Filogenia , Espectroscopía Infrarroja por Transformada de Fourier , Aspergillus , Hongos/metabolismo , Metaboloma , Antibacterianos/metabolismo , Extractos Vegetales/metabolismo
2.
PLoS One ; 15(1): e0227816, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31935268

RESUMEN

In the context of research for new cytotoxic compounds, obtaining bioactive molecules from renewable sources remain a big challenge. Microorganisms and more specifically Actinobacteria from original sources are well known for their biotechnological potential and are hotspots for the discovery of new bioactive compounds. The strain DP94 studied here had shown an interesting cytotoxic activity of its culture broth (HaCaT: IC50 = 8.0 ± 1.5 µg/mL; B16: IC50 = 4.6 ± 1.8 µg/mL), which could not been explained by the compounds isolated in a previous work. The increase of the cytotoxic activity of extracts was investigated, based on a Taguchi L9 orthogonal array design, after DP94 culture in TY medium using two different vessels (bioreactor or Erlenmeyer flasks). Various culture parameters such as temperature, pH and inoculum ratio (%) were studied. For experiments conducted in a bioreactor, stirring speed was included as an additional parameter. Significant differences in the cytotoxic activities of different extracts on B16 melanoma cancer cell lines, highlighted the influence of culture temperature on the production of cytotoxic compound(s) using a bioreactor. A culture in Erlenmeyer flasks was also performed and afforded an increase of the production of the active compounds. The best conditions for the highest cytotoxicity (IC50 on B16: 6 ± 0.5 µg/mL) and the highest yield (202.0 mg/L) were identified as: pH 6, temperature 37°C and 5% inoculum.


Asunto(s)
Supervivencia Celular/efectos de los fármacos , Medios de Cultivo/toxicidad , Citotoxinas/toxicidad , Nocardia/metabolismo , Animales , Reactores Biológicos , Línea Celular , Medios de Cultivo/química , Medios de Cultivo/metabolismo , Citotoxinas/aislamiento & purificación , Citotoxinas/metabolismo , Humanos , Microbiología Industrial , Queratinocitos/citología , Queratinocitos/efectos de los fármacos , Ratones , Nocardia/química , Nocardiosis/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA