Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
1.
Nucleic Acids Res ; 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39175109

RESUMEN

Most heritable diseases are polygenic. To comprehend the underlying genetic architecture, it is crucial to discover the clinically relevant epistatic interactions (EIs) between genomic single nucleotide polymorphisms (SNPs) (1-3). Existing statistical computational methods for EI detection are mostly limited to pairs of SNPs due to the combinatorial explosion of higher-order EIs. With NeEDL (network-based epistasis detection via local search), we leverage network medicine to inform the selection of EIs that are an order of magnitude more statistically significant compared to existing tools and consist, on average, of five SNPs. We further show that this computationally demanding task can be substantially accelerated once quantum computing hardware becomes available. We apply NeEDL to eight different diseases and discover genes (affected by EIs of SNPs) that are partly known to affect the disease, additionally, these results are reproducible across independent cohorts. EIs for these eight diseases can be interactively explored in the Epistasis Disease Atlas (https://epistasis-disease-atlas.com). In summary, NeEDL demonstrates the potential of seamlessly integrated quantum computing techniques to accelerate biomedical research. Our network medicine approach detects higher-order EIs with unprecedented statistical and biological evidence, yielding unique insights into polygenic diseases and providing a basis for the development of improved risk scores and combination therapies.

2.
Sci Rep ; 14(1): 18243, 2024 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107347

RESUMEN

Individual Specific Networks (ISNs) are a tool used in computational biology to infer Individual Specific relationships between biological entities from omics data. ISNs provide insights into how the interactions among these entities affect their respective functions. To address the scarcity of solutions for efficiently computing ISNs on large biological datasets, we present ISN-tractor, a data-agnostic, highly optimized Python library to build and analyse ISNs. ISN-tractor demonstrates superior scalability and efficiency in generating Individual Specific Networks (ISNs) when compared to existing methods such as LionessR, both in terms of time and memory usage, allowing ISNs to be used on large datasets. We show how ISN-tractor can be applied to real-life datasets, including The Cancer Genome Atlas (TCGA) and HapMap, showcasing its versatility. ISN-tractor can be used to build ISNs from various -omics data types, including transcriptomics, proteomics, and genotype arrays, and can detect distinct patterns of gene interactions within and across cancer types. We also show how Filtration Curves provided valuable insights into ISN characteristics, revealing topological distinctions among individuals with different clinical outcomes. Additionally, ISN-tractor can effectively cluster populations based on genetic relationships, as demonstrated with Principal Component Analysis on HapMap data.


Asunto(s)
Biología Computacional , Humanos , Biología Computacional/métodos , Redes Reguladoras de Genes , Neoplasias/genética , Programas Informáticos , Proteómica/métodos , Algoritmos
3.
Front Med (Lausanne) ; 11: 1348148, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38854671

RESUMEN

Introduction: In the evolving healthcare landscape, precision medicine's rise necessitates adaptable doctoral training. The European Union has recognized this and promotes the development of international, training-focused programmes called Innovative Training Networks (ITNs). In this article, we introduce TranSYS, an ITN focused on educating the next generation of precision medicine researchers. In an ambition to go beyond describing the consortium goals, our article explores two key aspects of ITNs: the training and collaboration. Methods: Using self-report questionnaires, we evaluate the scientific, professional, and personal growth of ESRs over the duration of the ITN and investigate whether this can be linked to network activities. Results: Our quantitative analysis approach reveals substantial improvements in scientific, professional, and social skills among young researchers facilitated by the engagement in this interdisciplinary network. We provide case studies underlining the advantages of collaborative environments, featuring innovative scientific exchange within TranSYS. Discussion: While challenging, ITNs foster positive growth in young researchers, yet exhibit weaknesses such as balancing stakeholder interests and partner commitment. We believe this study may benefit a variety of stakeholders, from prospective ITN creators to industry partners, to design better sustainable training networks going forward.

4.
Am J Med Genet A ; 194(7): e63584, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38450933

RESUMEN

Debates about the prospective clinical use of polygenic risk scores (PRS) have grown considerably in the last years. The potential benefits of PRS to improve patient care at individual and population levels have been extensively underlined. Nonetheless, the use of PRS in clinical contexts presents a number of unresolved ethical challenges and consequent normative gaps that hinder their optimal implementation. Here, we conducted a systematic review of reasons of the normative literature discussing ethical issues and moral arguments related to the use of PRS for the prevention and treatment of common complex diseases. In total, we have included and analyzed 34 records, spanning from 2013 to 2023. The findings have been organized in three major themes: in the first theme, we consider the potential harms of PRS to individuals and their kin. In the theme "Threats to health equity," we consider ethical concerns of social relevance, with a focus on justice issues. Finally, the theme "Towards best practices" collects a series of research priorities and provisional recommendations to be considered for an optimal clinical translation of PRS. We conclude that the use of PRS in clinical care reinvigorates old debates in matters of health justice; however, open questions, regarding best practices in clinical counseling, suggest that the ethical considerations applicable in monogenic settings will not be sufficient to face PRS emerging challenges.


Asunto(s)
Predisposición Genética a la Enfermedad , Herencia Multifactorial , Humanos , Herencia Multifactorial/genética , Principios Morales , Pruebas Genéticas/ética , Medición de Riesgo , Asesoramiento Genético/ética , Factores de Riesgo , Puntuación de Riesgo Genético
5.
Cancer Med ; 13(3): e6860, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38366800

RESUMEN

The immune response-gut microbiota interaction is implicated in various human diseases, including cancer. Identifying the link between the gut microbiota and systemic inflammatory markers and their association with cancer will be important for our understanding of cancer etiology. The current study was performed on 8090 participants from the population-based Rotterdam study. We found a significant association (false discovery rate [FDR] ≤0.05) between lymphocytes and three gut microbial taxa, namely the family Streptococcaceae, genus Streptococcus, and order Lactobacillales. In addition, we identified 95 gut microbial taxa that were associated with inflammatory markers (p < 0.05). Analyzing the cancer data, we observed a significant association between higher systemic immune-inflammation index (SII) levels at baseline (hazard ratio (HR): 1.65 [95% confidence interval (CI); 1.10-2.46, p ≤ 0.05]) and a higher count of lymphocytes (HR: 1.38 [95% CI: 1.15-1.65, p ≤ 0.05]) and granulocytes (HR: 1.69 [95% CI: 1.40-2.03, p ≤ 0.05]) with increased risk of lung cancer after adjusting for age, sex, body mass index (BMI), and study cohort. This association was lost for SII and lymphocytes after additional adjustment for smoking (SII = HR:1.46 [95% CI: 0.96-2.22, p = 0.07] and lymphocytes = HR: 1.19 [95% CI: 0.97-1.46, p = 0.08]). In the stratified analysis, higher count of lymphocyte and granulocytes at baseline were associated with an increased risk of lung cancer in smokers after adjusting for age, sex, BMI, and study cohort (HR: 1.33 [95% CI: 1.09-1.62, p ≤0.05] and HR: 1.57 [95% CI: 1.28-1.92, p ≤0.05], respectively). Our study revealed a positive association between gut microbiota, higher SII levels, and higher lymphocyte and granulocyte counts, with an increased risk of developing lung cancer.


Asunto(s)
Microbioma Gastrointestinal , Neoplasias Pulmonares , Humanos , Incidencia , Índice de Masa Corporal , Inflamación/epidemiología , Células Sanguíneas
6.
Vaccines (Basel) ; 12(2)2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38400120

RESUMEN

The seasonal influenza vaccine remains one of the vital recommended infection control measures for the elderly with chronic illnesses. We investigated the immunogenicity of a single dose of influenza vaccine in 123 seronegative participants and classified them into four distinct groups, determined by the promptness of vaccine response, the longevity of humoral immunity, and the likelihood of exhibiting cross-reactivity. Subsequently, we used transcriptional profiling and differential gene expression analysis to identify potential genes directly associated with the robust response to the vaccine. The group of exemplary vaccine responders differentially expressed 16 genes, namely: MZB1, MYDGF, TXNDC5, TXNDC11, HSP90B1, FKBP11, PDIA5, PRDX4, CD38, SDC1, TNFRSF17, TNFRSF13B, PAX5, POU2AF1, IRF4, and XBP1. Our findings point out a list of expressed proteins that are related to B cell proliferation, unfolded protein response, and cellular haemostasis, as well as a linkage of these expressions to the survival of long-lived plasma cells.

7.
medRxiv ; 2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-38076997

RESUMEN

Most heritable diseases are polygenic. To comprehend the underlying genetic architecture, it is crucial to discover the clinically relevant epistatic interactions (EIs) between genomic single nucleotide polymorphisms (SNPs)1-3. Existing statistical computational methods for EI detection are mostly limited to pairs of SNPs due to the combinatorial explosion of higher-order EIs. With NeEDL (network-based epistasis detection via local search), we leverage network medicine to inform the selection of EIs that are an order of magnitude more statistically significant compared to existing tools and consist, on average, of five SNPs. We further show that this computationally demanding task can be substantially accelerated once quantum computing hardware becomes available. We apply NeEDL to eight different diseases and discover genes (affected by EIs of SNPs) that are partly known to affect the disease, additionally, these results are reproducible across independent cohorts. EIs for these eight diseases can be interactively explored in the Epistasis Disease Atlas (https://epistasis-disease-atlas.com). In summary, NeEDL is the first application that demonstrates the potential of seamlessly integrated quantum computing techniques to accelerate biomedical research. Our network medicine approach detects higher-order EIs with unprecedented statistical and biological evidence, yielding unique insights into polygenic diseases and providing a basis for the development of improved risk scores and combination therapies.

8.
Front Genet ; 14: 1286800, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38125750

RESUMEN

Introduction: Multi-view data offer advantages over single-view data for characterizing individuals, which is crucial in precision medicine toward personalized prevention, diagnosis, or treatment follow-up. Methods: Here, we develop a network-guided multi-view clustering framework named netMUG to identify actionable subgroups of individuals. This pipeline first adopts sparse multiple canonical correlation analysis to select multi-view features possibly informed by extraneous data, which are then used to construct individual-specific networks (ISNs). Finally, the individual subtypes are automatically derived by hierarchical clustering on these network representations. Results: We applied netMUG to a dataset containing genomic data and facial images to obtain BMI-informed multi-view strata and showed how it could be used for a refined obesity characterization. Benchmark analysis of netMUG on synthetic data with known strata of individuals indicated its superior performance compared with both baseline and benchmark methods for multi-view clustering. The clustering derived from netMUG achieved an adjusted Rand index of 1 with respect to the synthesized true labels. In addition, the real-data analysis revealed subgroups strongly linked to BMI and genetic and facial determinants of these subgroups. Discussion: netMUG provides a powerful strategy, exploiting individual-specific networks to identify meaningful and actionable strata. Moreover, the implementation is easy to generalize to accommodate heterogeneous data sources or highlight data structures.

9.
Front Genet ; 14: 1274637, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37928248

RESUMEN

Molecular profiling technologies, such as RNA sequencing, offer new opportunities to better discover and understand the molecular networks involved in complex biological processes. Clinically important variations of diseases, or responses to treatment, are often reflected, or even caused, by the dysregulation of molecular interaction networks specific to particular network regions. In this work, we propose the R package PLEX.I, that allows quantifying and testing variation in the direct neighborhood of a given node between networks corresponding to different conditions or states. We illustrate PLEX.I in two applications in which we discover variation that is associated with different responses to tamoxifen treatment and to sex-specific responses to bacterial stimuli. In the first case, PLEX.I analysis identifies two known pathways i) that have already been implicated in the same context as the tamoxifen mechanism of action, and ii) that would have not have been identified using classical differential gene expression analysis.

10.
Sci Rep ; 13(1): 19653, 2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37949935

RESUMEN

Personalised cancer screening before therapy paves the way toward improving diagnostic accuracy and treatment outcomes. Most approaches are limited to a single data type and do not consider interactions between features, leaving aside the complementary insights that multimodality and systems biology can provide. In this project, we demonstrate the use of graph theory for data integration via individual networks where nodes and edges are individual-specific. We showcase the consequences of early, intermediate, and late graph-based fusion of RNA-Seq data and histopathology whole-slide images for predicting cancer subtypes and severity. The methodology developed is as follows: (1) we create individual networks; (2) we compute the similarity between individuals from these graphs; (3) we train our model on the similarity matrices; (4) we evaluate the performance using the macro F1 score. Pros and cons of elements of the pipeline are evaluated on publicly available real-life datasets. We find that graph-based methods can increase performance over methods that do not study interactions. Additionally, merging multiple data sources often improves classification compared to models based on single data, especially through intermediate fusion. The proposed workflow can easily be adapted to other disease contexts to accelerate and enhance personalized healthcare.


Asunto(s)
Neoplasias , Humanos , Neoplasias/diagnóstico , Neoplasias/genética , Instituciones de Salud , Imagen Multimodal , RNA-Seq , Registros
11.
Expert Rev Vaccines ; 22(1): 826-838, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37747798

RESUMEN

BACKGROUND: The influenza vaccine administrated every year is a recommended infection control procedure for individuals above the age of six months. However, the effectiveness of repeated annual vaccination is still an active research topic. Therefore, we investigated the vaccine immunogenicity in two independent groups: previously vaccinated versus non-vaccinated individuals at three time points; prior vaccination, one week and three months post vaccination. The assessment enabled us to evaluate the elicited immune responses and the durability of the induced protection in both groups. RESEARCH DESIGN AND METHODS: A research study was conducted to assess the immunogenicity of a single dose of Trivalent Inactivated Influenza Vaccine (A/H1N1, A/H3N2, and B) in 278 healthy adults aged between 32 and 66 years. Almost half of the participants, 140 (50·36%), received influenza vaccination at least once precursor to past influenza seasons. One blood sample was taken prior to vaccination for complete blood analysis and baseline immunogenicity assessment. The selected study participants received a single vaccine dose on the first day, and then followed up for three months. Two blood samples were taken after one week and three months post vaccination, respectively, for vaccine immunogenicity assessment. RESULTS: Before vaccination, the seroprotection, defined as a hemagglutination-inhibiting titer of =>1:40, was detected for the three vaccine virus strains in 20 previously vaccinated participants (14·29%) [8·95%, 21·2%]. We compared the overall vaccine response for the three virus strains using a normalized response score calculated from linearly transformed titer measurements; the score before vaccination was 84% higher in the previously vaccinated group and the mean difference between the two groups was statistically significant. Three months post-vaccination, we didn't find a significant difference in vaccine responses; the number of fully seroprotected individuals became 48 (34·29%) [26·48%, 42·77%] in the previously vaccinated group and 59 (42·75%) [34·37%, 51·45%] in the non-vaccinated group. The calculated response score was almost equal in both groups and the mean difference was no longer statistically significant. CONCLUSION: Our findings suggest that a single dose of influenza vaccine is equally protective after three months for annually vaccinated adults and first-time vaccine receivers.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Humanos , Adulto , Persona de Mediana Edad , Anciano , Preescolar , Gripe Humana/prevención & control , Subtipo H3N2 del Virus de la Influenza A , Vacunas de Productos Inactivados , Vacunación , Inmunogenicidad Vacunal , Anticuerpos Antivirales , Pruebas de Inhibición de Hemaglutinación
12.
bioRxiv ; 2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37205363

RESUMEN

Multi-view data offer advantages over single-view data for characterizing individuals, which is crucial in precision medicine toward personalized prevention, diagnosis, or treatment follow-up. Here, we develop a network-guided multi-view clustering framework named netMUG to identify actionable subgroups of individuals. This pipeline first adopts sparse multiple canonical correlation analysis to select multi-view features possibly informed by extraneous data, which are then used to construct individual-specific networks (ISNs). Finally, the individual subtypes are automatically derived by hierarchical clustering on these network representations. We applied netMUG to a dataset containing genomic data and facial images to obtain BMI-informed multi-view strata and showed how it could be used for a refined obesity characterization. Benchmark analysis of netMUG on synthetic data with known strata of individuals indicated its superior performance compared with both baseline and benchmark methods for multi-view clustering. In addition, the real-data analysis revealed subgroups strongly linked to BMI and genetic and facial determinants of these classes. NetMUG provides a powerful strategy, exploiting individual-specific networks to identify meaningful and actionable strata. Moreover, the implementation is easy to generalize to accommodate heterogeneous data sources or highlight data structures.

13.
Front Microbiol ; 14: 1170391, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37256048

RESUMEN

Longitudinal analysis of multivariate individual-specific microbiome profiles over time or across conditions remains dauntin. Most statistical tools and methods that are available to study microbiomes are based on cross-sectional data. Over the past few years, several attempts have been made to model the dynamics of bacterial species over time or across conditions. However, the field needs novel views on handling microbial interactions in temporal analyses. This study proposes a novel data analysis framework, MNDA, that combines representation learning and individual-specific microbial co-occurrence networks to uncover taxon neighborhood dynamics. As a use case, we consider a cohort of newborns with microbiomes available at 6 and 9 months after birth, and extraneous data available on the mode of delivery and diet changes between the considered time points. Our results show that prediction models for these extraneous outcomes based on an MNDA measure of local neighborhood dynamics for each taxon outperform traditional prediction models solely based on individual-specific microbial abundances. Furthermore, our results show that unsupervised similarity analysis of newborns in the study, again using the notion of a taxon's dynamic neighborhood derived from time-matched individual-specific microbial networks, can reveal different subpopulations of individuals, compared to standard microbiome-based clustering, with potential relevance to clinical practice. This study highlights the complementarity of microbial interactions and abundances in downstream analyses and opens new avenues to personalized prediction or stratified medicine with temporal microbiome data.

14.
Sci Rep ; 13(1): 7868, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37188794

RESUMEN

Individual-specific networks, defined as networks of nodes and connecting edges that are specific to an individual, are promising tools for precision medicine. When such networks are biological, interpretation of functional modules at an individual level becomes possible. An under-investigated problem is relevance or "significance" assessment of each individual-specific network. This paper proposes novel edge and module significance assessment procedures for weighted and unweighted individual-specific networks. Specifically, we propose a modular Cook's distance using a method that involves iterative modeling of one edge versus all the others within a module. Two procedures assessing changes between using all individuals and using all individuals but leaving one individual out (LOO) are proposed as well (LOO-ISN, MultiLOO-ISN), relying on empirically derived edges. We compare our proposals to competitors, including adaptions of OPTICS, kNN, and Spoutlier methods, by an extensive simulation study, templated on real-life scenarios for gene co-expression and microbial interaction networks. Results show the advantages of performing modular versus edge-wise significance assessments for individual-specific networks. Furthermore, modular Cook's distance is among the top performers across all considered simulation settings. Finally, the identification of outlying individuals regarding their individual-specific networks, is meaningful for precision medicine purposes, as confirmed by network analysis of microbiome abundance profiles.


Asunto(s)
Algoritmos , Redes Reguladoras de Genes , Humanos , Simulación por Computador
15.
Am J Hum Genet ; 110(4): 575-591, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-37028392

RESUMEN

Leveraging linkage disequilibrium (LD) patterns as representative of population substructure enables the discovery of additive association signals in genome-wide association studies (GWASs). Standard GWASs are well-powered to interrogate additive models; however, new approaches are required for invesigating other modes of inheritance such as dominance and epistasis. Epistasis, or non-additive interaction between genes, exists across the genome but often goes undetected because of a lack of statistical power. Furthermore, the adoption of LD pruning as customary in standard GWASs excludes detection of sites that are in LD but might underlie the genetic architecture of complex traits. We hypothesize that uncovering long-range interactions between loci with strong LD due to epistatic selection can elucidate genetic mechanisms underlying common diseases. To investigate this hypothesis, we tested for associations between 23 common diseases and 5,625,845 epistatic SNP-SNP pairs (determined by Ohta's D statistics) in long-range LD (>0.25 cM). Across five disease phenotypes, we identified one significant and four near-significant associations that replicated in two large genotype-phenotype datasets (UK Biobank and eMERGE). The genes that were most likely involved in the replicated associations were (1) members of highly conserved gene families with complex roles in multiple pathways, (2) essential genes, and/or (3) genes that were associated in the literature with complex traits that display variable expressivity. These results support the highly pleiotropic and conserved nature of variants in long-range LD under epistatic selection. Our work supports the hypothesis that epistatic interactions regulate diverse clinical mechanisms and might especially be driving factors in conditions with a wide range of phenotypic outcomes.


Asunto(s)
Epistasis Genética , Estudio de Asociación del Genoma Completo , Desequilibrio de Ligamiento/genética , Genotipo , Bancos de Muestras Biológicas , Reino Unido , Polimorfismo de Nucleótido Simple/genética
16.
Brief Bioinform ; 24(2)2023 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-36738256

RESUMEN

Many problems in life sciences can be brought back to a comparison of graphs. Even though a multitude of such techniques exist, often, these assume prior knowledge about the partitioning or the number of clusters and fail to provide statistical significance of observed between-network heterogeneity. Addressing these issues, we developed an unsupervised workflow to identify groups of graphs from reliable network-based statistics. In particular, we first compute the similarity between networks via appropriate distance measures between graphs and use them in an unsupervised hierarchical algorithm to identify classes of similar networks. Then, to determine the optimal number of clusters, we recursively test for distances between two groups of networks. The test itself finds its inspiration in distance-wise ANOVA algorithms. Finally, we assess significance via the permutation of between-object distance matrices. Notably, the approach, which we will call netANOVA, is flexible since users can choose multiple options to adapt to specific contexts and network types. We demonstrate the benefits and pitfalls of our approach via extensive simulations and an application to two real-life datasets. NetANOVA achieved high performance in many simulation scenarios while controlling type I error. On non-synthetic data, comparison against state-of-the-art methods showed that netANOVA is often among the top performers. There are many application fields, including precision medicine, for which identifying disease subtypes via individual-level biological networks improves prevention programs, diagnosis and disease monitoring.


Asunto(s)
Algoritmos , Análisis por Conglomerados , Simulación por Computador , Flujo de Trabajo , Análisis de Varianza
17.
Pac Symp Biocomput ; 28: 245-256, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36540981

RESUMEN

SNP-based information is used in several existing clustering methods to detect shared genetic ancestry or to identify population substructure. Here, we present a methodology, called IPCAPS for unsupervised population analysis using iterative pruning. Our method, which can capture fine-level structure in populations, supports ordinal data, and thus can readily be applied to SNP data. Although haplotypes may be more informative than SNPs, especially in fine-level substructure detection contexts, the haplotype inference process often remains too computationally intensive. In this work, we investigate the scale of the structure we can detect in populations without knowledge about haplotypes; our simulated data do not assume the availability of haplotype information while comparing our method to existing tools for detecting fine-level population substructures. We demonstrate experimentally that IPCAPS can achieve high accuracy and can outperform existing tools in several simulated scenarios. The fine-level structure detected by IPCAPS on an application to the 1000 Genomes Project data underlines its subject heterogeneity.


Asunto(s)
Biología Computacional , Polimorfismo de Nucleótido Simple , Humanos , Haplotipos , Análisis por Conglomerados
18.
Int J Mol Sci ; 23(24)2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36555213

RESUMEN

A reoccurring issue in neuroepigenomic studies, especially in the context of neurodegenerative disease, is the use of (heterogeneous) bulk tissue, which generates noise during epigenetic profiling. A workable solution to this issue is to quantify epigenetic patterns in individually isolated neuronal cells using laser capture microdissection (LCM). For this purpose, we established a novel approach for targeted DNA methylation profiling of individual genes that relies on a combination of LCM and limiting dilution bisulfite pyrosequencing (LDBSP). Using this approach, we determined cytosine-phosphate-guanine (CpG) methylation rates of single alleles derived from 50 neurons that were isolated from unfixed post-mortem brain tissue. In the present manuscript, we describe the general workflow and, as a showcase, demonstrate how targeted methylation analysis of various genes, in this case, RHBDF2, OXT, TNXB, DNAJB13, PGLYRP1, C3, and LMX1B, can be performed simultaneously. By doing so, we describe an adapted data analysis pipeline for LDBSP, allowing one to include and correct CpG methylation rates derived from multi-allele reactions. In addition, we show that the efficiency of LDBSP on DNA derived from LCM neurons is similar to the efficiency obtained in previously published studies using this technique on other cell types. Overall, the method described here provides the user with a more accurate estimation of the DNA methylation status of each target gene in the analyzed cell pools, thereby adding further validity to this approach.


Asunto(s)
Enfermedades Neurodegenerativas , Humanos , Análisis de Secuencia de ADN/métodos , Metilación de ADN , Encéfalo , Secuenciación de Nucleótidos de Alto Rendimiento , Rayos Láser , Chaperonas Moleculares , Proteínas Reguladoras de la Apoptosis
19.
Sci Rep ; 12(1): 11027, 2022 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-35773268

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is categorized as the leading cause of cancer mortality worldwide. However, its predictive markers for long-term survival are not well known. It is interesting to delineate individual-specific perturbed genes when comparing long-term (LT) and short-term (ST) PDAC survivors and integrate individual- and group-based transcriptome profiling. Using a discovery cohort of 19 PDAC patients from CHU-Liège (Belgium), we first performed differential gene expression analysis comparing LT to ST survivor. Second, we adopted systems biology approaches to obtain clinically relevant gene modules. Third, we created individual-specific perturbation profiles. Furthermore, we used Degree-Aware disease gene prioritizing (DADA) method to develop PDAC disease modules; Network-based Integration of Multi-omics Data (NetICS) to integrate group-based and individual-specific perturbed genes in relation to PDAC LT survival. We identified 173 differentially expressed genes (DEGs) in ST and LT survivors and five modules (including 38 DEGs) showing associations to clinical traits. Validation of DEGs in the molecular lab suggested a role of REG4 and TSPAN8 in PDAC survival. Via NetICS and DADA, we identified various known oncogenes such as CUL1 and TGFB1. Our proposed analytic workflow shows the advantages of combining clinical and omics data as well as individual- and group-level transcriptome profiling.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Biomarcadores de Tumor/genética , Carcinoma Ductal Pancreático/patología , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pancreáticas/patología , Tetraspaninas/metabolismo , Transcriptoma , Neoplasias Pancreáticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...