Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Med Chem ; 62(17): 8164-8177, 2019 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-31408339

RESUMEN

Recent efforts to identify new highly potent arginase inhibitors have resulted in the discovery of a novel family of (3R,4S)-3-amino-4-(3-boronopropyl)pyrrolidine-3-carboxylic acid analogues with up to a 1000-fold increase in potency relative to the current standards, 2-amino-6-boronohexanoic acid (ABH) and N-hydroxy-nor-l-arginine (nor-NOHA). The lead candidate, with an N-2-amino-3-phenylpropyl substituent (NED-3238), example 43, inhibits arginase I and II with IC50 values of 1.3 and 8.1 nM, respectively. Herein, we report the design, synthesis, and structure-activity relationships for this novel series of inhibitors, along with X-ray crystallographic data for selected examples bound to human arginase II.


Asunto(s)
Arginasa/antagonistas & inhibidores , Descubrimiento de Drogas , Inhibidores Enzimáticos/farmacología , Pirrolidinas/farmacología , Arginasa/metabolismo , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Modelos Moleculares , Estructura Molecular , Pirrolidinas/síntesis química , Pirrolidinas/química , Relación Estructura-Actividad
2.
Nat Chem Biol ; 14(12): 1073-1078, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30323219

RESUMEN

Specific RNA structures control numerous metabolic processes that impact human health, and yet efforts to target RNA structures de novo have been limited. In eukaryotes, the self-splicing group II intron is a mitochondrial RNA tertiary structure that is absent in vertebrates but essential for respiration in plants, fungi and yeast. Here we show that this RNA can be targeted through a process of high-throughput in vitro screening, SAR and lead optimization, resulting in high-affinity compounds that specifically inhibit group IIB intron splicing in vitro and in vivo and lack toxicity in human cells. The compounds are potent growth inhibitors of the pathogen Candida parapsilosis, displaying antifungal activity comparable to that of amphotericin B. These studies demonstrate that RNA tertiary structures can be successfully targeted de novo, resulting in pharmacologically valuable compounds.


Asunto(s)
Antifúngicos/química , Antifúngicos/farmacología , Ensayos Analíticos de Alto Rendimiento/métodos , Intrones/efectos de los fármacos , Empalme del ARN/efectos de los fármacos , Candida parapsilosis/efectos de los fármacos , Candida parapsilosis/genética , Candida parapsilosis/crecimiento & desarrollo , Complejo IV de Transporte de Electrones/genética , Células HEK293 , Humanos , Intrones/genética , Pruebas de Sensibilidad Microbiana , ARN Catalítico/genética , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Relación Estructura-Actividad
3.
Cell Chem Biol ; 25(10): 1231-1241.e4, 2018 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-30078634

RESUMEN

The oligosaccharyltransferase (OST) is a multisubunit enzyme complex that N-glycosylates proteins in the secretory pathway and is considered to be constitutive and unregulated. However, small-molecule OST inhibitors such as NGI-1 provide a pharmacological approach for regulating N-linked glycosylation. Herein we design cell models with knockout of each OST catalytic subunit (STT3A or STT3B) to screen the activity of NGI-1 and its analogs. We show that NGI-1 targets the function of both STT3A and STT3B and use structure-activity relationships to guide synthesis of catalytic subunit-specific inhibitors. Using this approach, pharmacophores that increase STT3B selectivity are characterized and an STT3B-specific inhibitor is identified. This inhibitor has discrete biological effects on endogenous STT3B target proteins such as COX2 but does not activate the cellular unfolded protein response. Together this work demonstrates that subsets of glycoproteins can be regulated through pharmacologic inhibition of N-linked glycosylation.


Asunto(s)
Benzamidas/química , Benzamidas/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Hexosiltransferasas/antagonistas & inhibidores , Proteínas de la Membrana/antagonistas & inhibidores , Sulfonamidas/química , Sulfonamidas/farmacología , Dominio Catalítico , Evaluación Preclínica de Medicamentos , Técnicas de Inactivación de Genes , Células HEK293 , Hexosiltransferasas/genética , Hexosiltransferasas/metabolismo , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Relación Estructura-Actividad
4.
Biochemistry ; 53(28): 4671-84, 2014 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-25007099

RESUMEN

The X-ray crystal structure of arginase from Schistosoma mansoni (SmARG) and the structures of its complexes with several amino acid inhibitors have been determined at atomic resolution. SmARG is a binuclear manganese metalloenzyme that catalyzes the hydrolysis of l-arginine to form l-ornithine and urea, and this enzyme is upregulated in all forms of the parasite that interact with the human host. Current hypotheses suggest that parasitic arginases could play a role in host immune evasion by depleting pools of substrate l-arginine that would otherwise be utilized for NO biosynthesis and NO-dependent processes in the immune response. Although the amino acid sequence of SmARG is only 42% identical with that of human arginase I, residues important for substrate binding and catalysis are strictly conserved. In general, classical amino acid inhibitors such as 2(S)-amino-6-boronohexanoic acid (ABH) tend to bind more weakly to SmARG than to human arginase I despite identical inhibitor binding modes in each enzyme active site. The identification of a patch on the enzyme surface capable of accommodating the additional Cα substitutent of an α,α-disubstituted amino acid inhibitor suggests that such inhibitors could exhibit higher affinity and biological activity. The structures of SmARG complexed with two different α,α-disubstituted derivatives of ABH are presented and provide a proof of concept for this approach in the enhancement of enzyme-inhibitor affinity.


Asunto(s)
Arginasa/antagonistas & inhibidores , Arginasa/química , Sistemas de Liberación de Medicamentos , Inhibidores Enzimáticos/química , Proteínas del Helminto/antagonistas & inhibidores , Proteínas del Helminto/química , Schistosoma mansoni/enzimología , Esquistosomiasis mansoni/enzimología , Animales , Arginasa/genética , Arginasa/metabolismo , Cristalografía por Rayos X , Inhibidores Enzimáticos/uso terapéutico , Humanos , Estructura Terciaria de Proteína , Schistosoma mansoni/genética , Esquistosomiasis mansoni/tratamiento farmacológico , Esquistosomiasis mansoni/genética , Homología Estructural de Proteína
5.
J Med Chem ; 56(6): 2568-80, 2013 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-23472952

RESUMEN

Recent efforts to identify treatments for myocardial ischemia reperfusion injury have resulted in the discovery of a novel series of highly potent α,α-disubstituted amino acid-based arginase inhibitors. The lead candidate, (R)-2-amino-6-borono-2-(2-(piperidin-1-yl)ethyl)hexanoic acid, compound 9, inhibits human arginases I and II with IC50s of 223 and 509 nM, respectively, and is active in a recombinant cellular assay overexpressing human arginase I (CHO cells). It is 28% orally bioavailable and significantly reduces the infarct size in a rat model of myocardial ischemia/reperfusion injury. Herein, we report the design, synthesis, and structure-activity relationships (SAR) for this novel series of inhibitors along with pharmacokinetic and in vivo efficacy data for compound 9 and X-ray crystallography data for selected lead compounds cocrystallized with arginases I and II.


Asunto(s)
Aminoácidos/química , Aminoácidos/farmacología , Arginasa/antagonistas & inhibidores , Compuestos de Boro/química , Compuestos de Boro/farmacología , Caproatos/química , Caproatos/farmacología , Descubrimiento de Drogas , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Aminoácidos/farmacocinética , Aminoácidos/uso terapéutico , Animales , Arginasa/química , Compuestos de Boro/farmacocinética , Compuestos de Boro/uso terapéutico , Células CHO , Caproatos/farmacocinética , Caproatos/uso terapéutico , Cricetinae , Cricetulus , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacocinética , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Humanos , Masculino , Modelos Moleculares , Conformación Proteica , Ratas , Relación Estructura-Actividad
6.
Bioorg Med Chem Lett ; 19(7): 2006-8, 2009 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-19250825

RESUMEN

Efforts to identify treatments for chronic diabetic complications have resulted in the discovery of a novel series of highly potent and selective [3-(4,5,7-trifluoro-benzothiazol-2-ylmethyl)-pyrrolo[2,3-b]pyridin-1-yl]acetic acid aldose reductase inhibitors. The lead candidate, [6-methyl-3-(4,5,7-trifluoro-benzothiazol-2-ylmethyl)-pyrrolo[2,3-b]pyridin-1-yl]acetic acid example 16, inhibits aldose reductase with an IC50 of 8 nM, while being inactive against aldehyde reductase (IC50>100 microM), a related enzyme involved in the detoxification of reactive aldehydes.


Asunto(s)
Acetatos/síntesis química , Acetatos/farmacología , Aldehído Reductasa/antagonistas & inhibidores , Benzotiazoles/síntesis química , Inhibidores Enzimáticos/síntesis química , Acetatos/química , Aldehído Reductasa/metabolismo , Benzotiazoles/química , Benzotiazoles/farmacología , Dominio Catalítico , Enfermedad Crónica , Simulación por Computador , Cristalografía por Rayos X , Complicaciones de la Diabetes/tratamiento farmacológico , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Humanos , Concentración 50 Inhibidora
7.
J Med Chem ; 48(9): 3141-52, 2005 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-15857120

RESUMEN

Recent efforts to identify treatments for chronic diabetic complications have resulted in the discovery of a novel series of highly potent and selective 3-[(benzothiazol-2-yl)methyl]indole-N-alkanoic acid aldose reductase inhibitors. The lead candidate, 3-[(4,5,7-trifluorobenzothiazol-2-yl)methyl]indole-N-acetic acid (lidorestat, 9) inhibits aldose reductase with an IC(50) of 5 nM, while being 5400 times less active against aldehyde reductase, a related enzyme involved in the detoxification of reactive aldehydes. It lowers nerve and lens sorbitol levels with ED(50)'s of 1.9 and 4.5 mg/kg/d po, respectively, in the 5-day STZ-induced diabetic rat model. In a 3-month diabetic intervention model (1 month of diabetes followed by 2 months of drug treatment at 5 mg/kg/d po), it normalizes polyols and reduces the motor nerve conduction velocity deficit by 59% relative to diabetic controls. It has a favorable pharmacokinetic profile (F, 82%; t(1/2), 5.6 h; Vd, 0.694 L/kg) with good drug penetration in target tissues (C(max) in sciatic nerve and eye are 2.36 and 1.45 mug equiv/g, respectively, when dosed with [(14)C]lidorestat at 10 mg/kg po).


Asunto(s)
Aldehído Reductasa/antagonistas & inhibidores , Complicaciones de la Diabetes/tratamiento farmacológico , Ácidos Indolacéticos/síntesis química , Tiazoles/síntesis química , Aldehído Reductasa/química , Aldehído Reductasa/genética , Animales , Catarata/tratamiento farmacológico , Enfermedad Crónica , Cristalografía por Rayos X , Complicaciones de la Diabetes/metabolismo , Complicaciones de la Diabetes/fisiopatología , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/fisiopatología , Humanos , Ácidos Indolacéticos/farmacocinética , Ácidos Indolacéticos/farmacología , Cristalino/metabolismo , Masculino , Modelos Moleculares , Ratas , Ratas Sprague-Dawley , Nervio Ciático/metabolismo , Nervio Ciático/fisiopatología , Relación Estructura-Actividad , Tiazoles/farmacocinética , Tiazoles/farmacología , Distribución Tisular
8.
Bioorg Med Chem ; 12(21): 5661-75, 2004 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-15465344

RESUMEN

Recent efforts to identify treatments for chronic diabetic complications have resulted in the discovery of a novel series of highly potent and selective (2-arylcarbamoyl-phenoxy)-acetic acid aldose reductase inhibitors. The compound class features a core template that utilizes an intramolecular hydrogen bond to position the key structural elements of the pharmacophore in a conformation, which promotes a high binding affinity. The lead candidate, example 40, 5-fluoro-2-(4-bromo-2-fluoro-benzylthiocarbamoyl)-phenoxyacetic acid, inhibits aldose reductase with an IC(50) of 30 nM, while being 1100 times less active against aldehyde reductase, a related enzyme involved in the detoxification of reactive aldehydes. In addition, example 40 lowers nerve sorbitol levels with an ED(50) of 31 mg/kg/d po in the 4-day STZ-induced diabetic rat model.


Asunto(s)
Ácido Acético/síntesis química , Aldehído Reductasa/antagonistas & inhibidores , Diabetes Mellitus Experimental/tratamiento farmacológico , Diseño de Fármacos , Ácido Acético/farmacología , Ácido Acético/uso terapéutico , Aldehído Reductasa/metabolismo , Animales , Enfermedad Crónica , Diabetes Mellitus Experimental/enzimología , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Masculino , Ratas , Ratas Sprague-Dawley , Sorbitol/antagonistas & inhibidores , Sorbitol/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...