Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nature ; 608(7922): 368-373, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35896744

RESUMEN

Ketamine is used clinically as an anaesthetic and a fast-acting antidepressant, and recreationally for its dissociative properties, raising concerns of addiction as a possible side effect. Addictive drugs such as cocaine increase the levels of dopamine in the nucleus accumbens. This facilitates synaptic plasticity in the mesolimbic system, which causes behavioural adaptations and eventually drives the transition to compulsion1-4. The addiction liability of ketamine is a matter of much debate, in part because of its complex pharmacology that among several targets includes N-methyl-D-aspartic acid (NMDA) receptor (NMDAR) antagonism5,6. Here we show that ketamine does not induce the synaptic plasticity that is typically observed with addictive drugs in mice, despite eliciting robust dopamine transients in the nucleus accumbens. Ketamine nevertheless supported reinforcement through the disinhibition of dopamine neurons in the ventral tegmental area (VTA). This effect was mediated by NMDAR antagonism in GABA (γ-aminobutyric acid) neurons of the VTA, but was quickly terminated by type-2 dopamine receptors on dopamine neurons. The rapid off-kinetics of the dopamine transients along with the NMDAR antagonism precluded the induction of synaptic plasticity in the VTA and the nucleus accumbens, and did not elicit locomotor sensitization or uncontrolled self-administration. In summary, the dual action of ketamine leads to a unique constellation of dopamine-driven positive reinforcement, but low addiction liability.


Asunto(s)
Ketamina , Trastornos Relacionados con Sustancias , Animales , Dopamina/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Ketamina/efectos adversos , Ketamina/farmacología , Ratones , Plasticidad Neuronal/efectos de los fármacos , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Refuerzo en Psicología , Autoadministración , Trastornos Relacionados con Sustancias/etiología , Trastornos Relacionados con Sustancias/prevención & control , Área Tegmental Ventral/citología , Área Tegmental Ventral/efectos de los fármacos
2.
Elife ; 102021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34608866

RESUMEN

Locomotor sensitization (LS) is an early behavioral adaptation to addictive drugs, driven by the increase of dopamine in the Nucleus Accumbens (NAc). However, the effect on accumbal population activity remains elusive. Here, we used single-cell calcium imaging in mice to record the activity of dopamine-1-receptor (D1R) and dopamine-2-receptor (D2R) expressing spiny projection neurons (SPNs) during cocaine LS. Acute exposure to cocaine elevated D1R SPN activity and reduced D2R SPN activity, albeit with high variability between neurons. During LS, the number of D1R and D2R neurons responding in opposite directions increased. Moreover, preventing LS by inhibition of the ERK signaling pathway decreased the number of cocaine responsive D1R SPNs, but had little effect on D2R SPNs. These results indicate that accumbal population dichotomy is dynamic and contains a subgroup of D1R SPNs that eventually drives LS. Insights into the drug-related activity dynamics provides a foundation for understanding the circuit-level addiction pathogenesis.


Asunto(s)
Cocaína/farmacología , Neuronas Dopaminérgicas/efectos de los fármacos , Locomoción/efectos de los fármacos , Núcleo Accumbens/metabolismo , Animales , Neuronas Dopaminérgicas/metabolismo , Femenino , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Núcleo Accumbens/efectos de los fármacos , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo
3.
Science ; 373(6560): 1252-1256, 2021 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-34516792

RESUMEN

Compulsive drug use despite adverse consequences defines addiction. While mesolimbic dopamine signaling is sufficient to drive compulsion, psychostimulants such as cocaine also boost extracellular serotonin (5-HT) by inhibiting reuptake. We used SERT Met172 knockin (SertKI) mice carrying a transporter that no longer binds cocaine to abolish 5-HT transients during drug self-administration. SertKI mice showed an enhanced transition to compulsion. Conversely, pharmacologically elevating 5-HT reversed the inherently high rate of compulsion transition with optogenetic dopamine self-stimulation. The bidirectional effect on behavior is explained by presynaptic depression of orbitofrontal cortex­to­dorsal striatum synapses induced by 5-HT via 5-HT1B receptors. Consequently, in projection-specific 5-HT1B receptor knockout mice, the fraction of individuals compulsively self-administering cocaine was elevated.


Asunto(s)
Trastornos Relacionados con Cocaína/metabolismo , Receptor de Serotonina 5-HT1B/metabolismo , Serotonina/metabolismo , Transmisión Sináptica , Animales , Cocaína/administración & dosificación , Trastornos Relacionados con Cocaína/genética , Dopamina/metabolismo , Técnicas de Sustitución del Gen , Ratones , Ratones Noqueados , Optogenética , Receptor de Serotonina 5-HT1B/deficiencia , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo
4.
J Neurosci ; 41(23): 5004-5014, 2021 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-33888609

RESUMEN

Associating natural rewards with predictive environmental cues is crucial for survival. Dopamine (DA) neurons of the ventral tegmental area (VTA) are thought to play a crucial role in this process by encoding reward prediction errors (RPEs) that have been hypothesized to play a role in associative learning. However, it is unclear whether this signal is still necessary after animals have acquired a cue-reward association. In order to investigate this, we trained mice to learn a Pavlovian cue-reward association. After learning, mice show robust anticipatory and consummatory licking behavior. As expected, calcium activity of VTA DA neurons goes up for cue presentation as well as reward delivery. Optogenetic inhibition during the moment of reward delivery disrupts learned behavior, even in the continued presence of reward. This effect is more pronounced over trials and persists on the next training day. Moreover, outside of the task licking behavior and locomotion are unaffected. Similarly to inhibitions during the reward period, we find that inhibiting cue-induced dopamine (DA) signals robustly decreases learned licking behavior, indicating that cue-related DA signals are a potent driver for learned behavior. Overall, we show that inhibition of either of these DA signals directly impairs the expression of learned associative behavior. Thus, continued DA signaling in a learned state is necessary for consolidating Pavlovian associations.SIGNIFICANCE STATEMENT Dopamine (DA) neurons of the ventral tegmental area (VTA) have long been suggested to be necessary for animals to associate environmental cues with rewards that they predict. Here, we use time-locked optogenetic inhibition of these neurons to show that the activity of these neurons is directly necessary for performance on a Pavlovian conditioning task, without affecting locomotor per se These findings provide further support for the direct importance of second-by-second DA neuron activity in associative learning.


Asunto(s)
Aprendizaje por Asociación/fisiología , Condicionamiento Clásico/fisiología , Señales (Psicología) , Neuronas Dopaminérgicas/fisiología , Recompensa , Área Tegmental Ventral/fisiología , Animales , Dopamina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL
5.
Science ; 364(6444): 991-995, 2019 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-31171697

RESUMEN

When an animal is facing unfamiliar food, its odor, together with semiochemicals emanating from a conspecific, can constitute a safety message and authorize intake. The piriform cortex (PiC) codes olfactory information, and the inactivation of neurons in the nucleus accumbens (NAc) can acutely trigger consumption. However, the neural circuit and cellular substrate of transition of olfactory perception into value-based actions remain elusive. We detected enhanced activity after social transmission between two mice in neurons of the medial prefrontal cortex (mPFC) that target the NAc and receive projections from the PiC. Exposure to a conspecific potentiated the excitatory postsynaptic currents in NAc projectors, whereas blocking transmission from PiC to mPFC prevented social transmission. Thus, synaptic plasticity in the mPFC is a cellular substrate of social transmission of food safety.


Asunto(s)
Preferencias Alimentarias/psicología , Inocuidad de los Alimentos , Plasticidad Neuronal/fisiología , Corteza Piriforme/fisiología , Corteza Prefrontal/fisiología , Conducta Social , Animales , Ratones , Ratones Endogámicos C57BL
6.
Nature ; 564(7736): 366-371, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30568192

RESUMEN

Activation of the mesolimbic dopamine system reinforces goal-directed behaviours. With repetitive stimulation-for example, by chronic drug abuse-the reinforcement may become compulsive and intake continues even in the face of major negative consequences. Here we gave mice the opportunity to optogenetically self-stimulate dopaminergic neurons and observed that only a fraction of mice persevered if they had to endure an electric shock. Compulsive lever pressing was associated with an activity peak in the projection terminals from the orbitofrontal cortex (OFC) to the dorsal striatum. Although brief inhibition of OFC neurons temporarily relieved compulsive reinforcement, we found that transmission from the OFC to the striatum was permanently potentiated in persevering mice. To establish causality, we potentiated these synapses in vivo in mice that stopped optogenetic self-stimulation of dopamine neurons because of punishment; this led to compulsive lever pressing, whereas depotentiation in persevering mice had the converse effect. In summary, synaptic potentiation of transmission from the OFC to the dorsal striatum drives compulsive reinforcement, a defining symptom of addiction.


Asunto(s)
Conducta Adictiva/fisiopatología , Conducta Compulsiva/fisiopatología , Modelos Neurológicos , Plasticidad Neuronal , Animales , Conducta Adictiva/patología , Conducta Adictiva/psicología , Conducta Compulsiva/patología , Conducta Compulsiva/psicología , Neuronas Dopaminérgicas/fisiología , Estimulación Eléctrica , Femenino , Masculino , Ratones , Neostriado/citología , Neostriado/fisiología , Inhibición Neural , Vías Nerviosas , Optogenética , Corteza Prefrontal/citología , Corteza Prefrontal/fisiología , Castigo , Refuerzo en Psicología , Procesos Estocásticos , Sinapsis/metabolismo , Transmisión Sináptica
7.
Elife ; 72018 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-30373717

RESUMEN

The dopamine (DA) hypothesis posits the increase of mesolimbic dopamine levels as a defining commonality of addictive drugs, initially causing reinforcement, eventually leading to compulsive consumption. While much experimental evidence from psychostimulants supports this hypothesis, it has been challenged for opioid reinforcement. Here, we monitor genetically encoded DA and calcium indicators as well as cFos in mice to reveal that heroin activates DA neurons located in the medial part of the VTA, preferentially projecting to the medial shell of the nucleus accumbens (NAc). Chemogenetic and optogenetic manipulations of VTA DA or GABA neurons establish a causal link to heroin reinforcement. Inhibition of DA neurons blocked heroin self-administration, while heroin inhibited optogenetic self-stimulation of DA neurons. Likewise, heroin occluded the self-inhibition of VTA GABA neurons. Together, these experiments support a model of disinhibition of a subset of VTA DA neurons in opioid reinforcement.


Asunto(s)
Neuronas Dopaminérgicas/fisiología , Heroína/efectos adversos , Núcleo Accumbens/fisiología , Refuerzo en Psicología , Animales , Dopamina/metabolismo , Células HEK293 , Humanos , Ratones Endogámicos C57BL , Optogenética , Autoadministración , Área Tegmental Ventral/fisiología
8.
Nat Commun ; 9(1): 731, 2018 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-29467419

RESUMEN

Hyperdopaminergic states in mental disorders are associated with disruptive deficits in decision making. However, the precise contribution of topographically distinct mesencephalic dopamine pathways to decision-making processes remains elusive. Here we show, using a multidisciplinary approach, how hyperactivity of ascending projections from the ventral tegmental area (VTA) contributes to impaired flexible decision making in rats. Activation of the VTA-nucleus accumbens pathway leads to insensitivity to loss and punishment due to impaired processing of negative reward prediction errors. In contrast, activation of the VTA-prefrontal cortex pathway promotes risky decision making without affecting the ability to choose the economically most beneficial option. Together, these findings show how malfunction of ascending VTA projections affects value-based decision making, suggesting a potential mechanism through which increased forebrain dopamine signaling leads to aberrant behavior, as is seen in substance abuse, mania, and after dopamine replacement therapy in Parkinson's disease.


Asunto(s)
Toma de Decisiones , Dopamina/metabolismo , Trastornos Mentales/metabolismo , Trastornos Mentales/psicología , Animales , Dopamina/análisis , Humanos , Masculino , Trastornos Mentales/fisiopatología , Corteza Prefrontal/metabolismo , Corteza Prefrontal/fisiopatología , Ratas , Ratas Wistar , Asunción de Riesgos , Área Tegmental Ventral/metabolismo , Área Tegmental Ventral/fisiopatología
9.
J Neurosci ; 32(46): 16120-8, 2012 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-23152596

RESUMEN

µ-Opioid receptors (MORs) in the ventral tegmental area (VTA) are pivotally involved in addictive behavior. While MORs are typically activated by opioids, they can also become constitutively active in the absence of any agonist. In the current study, we present evidence that MOR constitutive activity is highly relevant in the mouse VTA, as it regulates GABAergic input to dopamine neurons. Specifically, suppression of MOR constitutive activity with the inverse agonist KC-2-009 enhanced GABAergic neurotransmission onto VTA dopamine neurons. This inverse agonistic effect was fully blocked by the specific MOR neutral antagonist CTOP, which had no effect on GABAergic transmission itself. We next show that withdrawal from chronic morphine further increases the magnitude of inverse agonistic effects at the MOR, suggesting enhanced MOR constitutive activity. We demonstrate that this increase can be an adaptive response to the detrimental elevation in cAMP levels known to occur during morphine withdrawal. These findings offer important insights in the physiological occurrence and function of MOR constitutive activity, and have important implications for therapeutic strategies aimed at normalizing MOR signaling during addiction and opioid overdose.


Asunto(s)
Analgésicos Opioides/efectos adversos , Morfina/efectos adversos , Receptores Opioides mu/metabolismo , Síndrome de Abstinencia a Sustancias/metabolismo , Área Tegmental Ventral/metabolismo , Adenilil Ciclasas/metabolismo , Analgésicos Opioides/farmacología , Análisis de Varianza , Animales , Colforsina/farmacología , AMP Cíclico/metabolismo , Neuronas Dopaminérgicas/fisiología , Encefalina Ala(2)-MeFe(4)-Gli(5)/farmacología , Activadores de Enzimas/farmacología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Morfina/farmacología , Embarazo , Receptores Opioides mu/efectos de los fármacos , Ácido gamma-Aminobutírico/fisiología
10.
Neuron ; 73(6): 1184-94, 2012 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-22445345

RESUMEN

The activity of ventral tegmental area (VTA) dopamine (DA) neurons promotes behavioral responses to rewards and environmental stimuli that predict them. VTA GABA inputs synapse directly onto DA neurons and may regulate DA neuronal activity to alter reward-related behaviors; however, the functional consequences of selective activation of VTA GABA neurons remains unknown. Here, we show that in vivo optogenetic activation of VTA GABA neurons disrupts reward consummatory behavior but not conditioned anticipatory behavior in response to reward-predictive cues. In addition, direct activation of VTA GABA projections to the nucleus accumbens (NAc) resulted in detectable GABA release but did not alter reward consumption. Furthermore, optogenetic stimulation of VTA GABA neurons directly suppressed the activity and excitability of neighboring DA neurons as well as the release of DA in the NAc, suggesting that the dynamic interplay between VTA DA and GABA neurons can control the initiation and termination of reward-related behaviors.


Asunto(s)
Neuronas Dopaminérgicas/fisiología , Preferencias Alimentarias/fisiología , Neuronas GABAérgicas/fisiología , Recompensa , Área Tegmental Ventral/citología , Ácido gamma-Aminobutírico/metabolismo , Análisis de Varianza , Animales , Proteínas Bacterianas/genética , Conducta Animal , Biofisica , Channelrhodopsins , Señales (Psicología) , Dopamina/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , Estimulación Eléctrica , Conducta Exploratoria/efectos de los fármacos , Preferencias Alimentarias/efectos de los fármacos , Antagonistas del GABA/farmacología , Neuronas GABAérgicas/efectos de los fármacos , Técnicas In Vitro , Potenciales Postsinápticos Inhibidores/genética , Potenciales Postsinápticos Inhibidores/fisiología , Proteínas Luminiscentes/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Vías Nerviosas/fisiología , Óptica y Fotónica , Técnicas de Placa-Clamp , Piridazinas/farmacología , Sustancia Negra/metabolismo , Sacarosa/administración & dosificación , Factores de Tiempo , Tirosina 3-Monooxigenasa/metabolismo , Área Tegmental Ventral/efectos de los fármacos , Área Tegmental Ventral/metabolismo , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/genética , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/metabolismo
11.
Nat Protoc ; 7(1): 12-23, 2011 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-22157972

RESUMEN

In vivo optogenetic strategies have redefined our ability to assay how neural circuits govern behavior. Although acutely implanted optical fibers have previously been used in such studies, long-term control over neuronal activity has been largely unachievable. Here we describe a method to construct implantable optical fibers to readily manipulate neural circuit elements with minimal tissue damage or change in light output over time (weeks to months). Implanted optical fibers readily interface with in vivo electrophysiological arrays or electrochemical detection electrodes. The procedure described here, from implant construction to the start of behavioral experimentation, can be completed in approximately 2-6 weeks. Successful use of implantable optical fibers will allow for long-term control of mammalian neural circuits in vivo, which is integral to the study of the neurobiology of behavior.


Asunto(s)
Electrofisiología/métodos , Implantes Experimentales , Red Nerviosa/fisiología , Fibras Ópticas , Tecnología de Fibra Óptica/instrumentación , Tecnología de Fibra Óptica/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA