Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Clin Exp Immunol ; 211(3): 224-232, 2023 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-36622793

RESUMEN

The HLA region is the major genetic risk determinant of Type 1 diabetes. How non-HLA loci contribute to the genetic risk is incompletely understood, but there are indications that at least some impact progression of asymptomatic autoimmunity. We examined whether SNPs in 7 susceptibility loci (INS, SH2B3, PTPN2, PTPN22, CTLA4, CLEC16A, and IL2RA) could improve prediction of the progression from single to multiple autoantibody positivity, and from there on to diagnosis. SNPs were genotyped in persistently autoantibody positive relatives by allelic discrimination qPCR and disease progression was studied by multivariate Cox regression analysis. In our cohort, only the CTLA4 GA genotype (rs3087243, P = 0.002) and the CLEC16A AA genotype (rs12708716, P = 0.021) were associated with accelerated progression from single to multiple autoantibody positivity, but their effects were restricted to presence of HLA-DQ2/DQ8, and IAA as first autoantibody, respectively. The interaction of CTLA4 and HLA-DQ2/DQ8 overruled the effect of DQ2/DQ8 alone. The HLA-DQ2/DQ8-mediated risk of progression to multiple autoantibodies nearly entirely depended on heterozygosity for CTLA4. The SH2B3 TT genotype (rs3184504) was protective for HLA-DQ8 positive subjects (P = 0.003). At the stage of multiple autoantibodies, only the CTLA4 GA genotype was a minor independent risk factor for progression towards clinical diabetes (P = 0.034). Our study shows that non-HLA polymorphisms impact progression of islet autoimmunity in a subgroup-, stage- and SNP-specific way, suggesting distinct mechanisms. If confirmed, these findings may help refine risk assessment, follow-up, and prevention trials in risk groups.


Asunto(s)
Diabetes Mellitus Tipo 1 , Humanos , Autoanticuerpos , Autoinmunidad/genética , Antígeno CTLA-4/genética , Diabetes Mellitus Tipo 1/genética , Predisposición Genética a la Enfermedad , Genotipo , Lectinas Tipo C/genética , Proteínas de Transporte de Monosacáridos/genética , Polimorfismo de Nucleótido Simple , Proteína Tirosina Fosfatasa no Receptora Tipo 22/genética
2.
Diabetologia ; 64(11): 2511-2516, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34448034

RESUMEN

AIMS/HYPOTHESIS: We examined whether the non-HLA susceptibility locus ERBB3/IKZF4 influences progression of type 1 diabetes stage specifically according to sex. METHODS: SNPs of ERBB3 (rs2292239 T/G) and IKZF4 (rs1701704 G/T) were screened by allelic discrimination quantitative PCR assay in first-degree relatives of type 1 diabetes patients who had developed at least one circulating autoantibody. The effect of ERBB3/IKZF4 genotypes and sex, on the progression of single autoantibody positivity to multiple autoantibody positivity and from multiple autoantibody positivity to diabetes, was studied by Kaplan-Meier analysis and multivariate Cox regression. RESULTS: In the cohort of autoantibody-positive first-degree relatives, the risk allele frequencies for ERBB3 rs2292239 (T) and IKZF4 rs1701704 (G) were increased. There was a significant male excess at the stage of multiple autoantibody positivity (p = 0.021). In Kaplan-Meier survival analysis, progression from single to multiple antibody positivity was delayed in female participants with genotype ERBB3 GG (p = 0.018, vs ERBB3 TG+TT) or IKZF4 TT (p = 0.023, vs IKZF4 GT+GG), but not in male participants. In multivariate Cox regression models, the interaction effects between female sex and ERBB3 GG (p = 0.012; HR = 0.305 [95% CI 0.120, 0.773]) or between female sex and IKZF4 TT (p = 0.011; HR = 0.329 [95% CI 0.140, 0.777]) emerged as potential determinants of delayed progression to multiple autoantibodies. The progression from multiple autoantibody positivity to type 1 diabetes appeared not to be influenced by ERBB3/IKZF4. CONCLUSIONS/INTERPRETATION: In siblings and offspring of type 1 diabetes patients, polymorphism in region ERBB3/IKZF4 may affect disease progression at the level of epitope spreading in female individuals. Our findings suggest that interaction between sex and ERBB3/IKZF4 may contribute to the post-pubertal male excess in type 1 diabetes.


Asunto(s)
Autoanticuerpos/sangre , Autoantígenos/inmunología , Diabetes Mellitus Tipo 1/inmunología , Epítopos/inmunología , Factor de Transcripción Ikaros/genética , Receptor ErbB-3/genética , Caracteres Sexuales , Adolescente , Adulto , Niño , Diabetes Mellitus Tipo 1/genética , Progresión de la Enfermedad , Femenino , Predisposición Genética a la Enfermedad , Humanos , Insulina/inmunología , Masculino , Polimorfismo de Nucleótido Simple/genética , Modelos de Riesgos Proporcionales , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteínas Tirosina Fosfatasas Clase 8 Similares a Receptores/inmunología , Transportador 8 de Zinc/inmunología
4.
Diabetologia ; 59(7): 1474-1479, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27130279

RESUMEN

AIMS/HYPOTHESIS: Pw1 or paternally-expressed gene 3 (Peg3) encodes a zinc finger transcription factor that is widely expressed during mouse embryonic development and later restricted to multiple somatic stem cell lineages in the adult. The aim of the present study was to define Pw1 expression in the embryonic and adult pancreas and investigate its role in the beta cell cycle in Pw1 wild-type and mutant mice. METHODS: We analysed PW1 expression by immunohistochemistry in pancreas of nonpregant and pregnant mice and following injury by partial duct ligation. Its role in the beta cell cycle was studied in vivo using a novel conditional knockout mouse and in vitro by lentivirus-mediated gene knockdown. RESULTS: We showed that PW1 is expressed in early pancreatic progenitors at E9.5 but becomes progressively restricted to fully differentiated beta cells as they become established after birth and withdraw from the cell cycle. Notably, PW1 expression declines when beta cells are induced to proliferate and loss of PW1 function activates the beta cell cycle. CONCLUSIONS/INTERPRETATION: These results indicate that PW1 is a co-regulator of the beta cell cycle and can thus be considered a novel therapeutic target in diabetes.


Asunto(s)
Células Secretoras de Insulina/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Páncreas/metabolismo , Animales , Ciclo Celular/genética , Ciclo Celular/fisiología , Proliferación Celular/genética , Proliferación Celular/fisiología , Inmunohistoquímica , Células Secretoras de Insulina/citología , Factores de Transcripción de Tipo Kruppel/genética , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Páncreas/embriología
5.
Diabetologia ; 59(9): 1834-7, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27053238

RESUMEN

The generation of beta(-like) cells to compensate for their absolute or relative shortage in type 1 and type 2 diabetes is an obvious therapeutic strategy. Patients first received grafts of donor islet cells over 25 years ago, but this procedure has not become routine in clinical practice because of a donor cell shortage and (auto)immune problems. Transplantation of differentiated embryonic and induced pluripotent stem cells may overcome some but not all the current limitations. Reprogramming exocrine cells towards functional beta(-like) cells would offer an alternative abundant and autologous source of beta(-like) cells. This review focuses on work by our research group towards achieving such a source of cells. It summarises a presentation given at the 'Can we make a better beta cell?' symposium at the 2015 annual meeting of the EASD. It is accompanied by two other reviews on topics from this symposium (by Amin Ardestani and Kathrin Maedler, DOI: 10.1007/s00125-016-3892-9 , and by Heiko Lickert and colleagues, DOI: 10.1007/s00125-016-3949-9 ) and a commentary by the Session Chair, Shanta Persaud (DOI: 10.1007/s00125-016-3870-2 ).


Asunto(s)
Células Secretoras de Insulina/citología , Células Secretoras de Insulina/metabolismo , Páncreas/citología , Animales , Diferenciación Celular/fisiología , Humanos , Macrófagos/metabolismo , Factores de Transcripción/metabolismo
6.
J Vis Exp ; (102): e52765, 2015 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-26273954

RESUMEN

Expansion of pancreatic beta cells in vivo or ex vivo, or generation of beta cells by differentiation from an embryonic or adult stem cell, can provide new expandable sources of beta cells to alleviate the donor scarcity in human islet transplantation as therapy for diabetes. Although recent advances have been made towards this aim, mechanisms that regulate beta cell expansion and differentiation from a stem/progenitor cell remain to be characterized. Here, we describe a protocol for an injury model in the adult mouse pancreas that can function as a tool to study mechanisms of tissue remodeling and beta cell proliferation and differentiation. Partial duct ligation (PDL) is an experimentally induced injury of the rodent pancreas involving surgical ligation of the main pancreatic duct resulting in an obstruction of drainage of exocrine products out of the tail region of the pancreas. The inflicted damage induces acinar atrophy, immune cell infiltration and severe tissue remodeling. We have previously reported the activation of Neurogenin (Ngn) 3 expressing endogenous progenitor-like cells and an increase in beta cell proliferation after PDL. Therefore, PDL provides a basis to study signals involved in beta cell dynamics and the properties of an endocrine progenitor in adult pancreas. Since, it still remains largely unclear, which factors and pathways contribute to beta cell neogenesis and proliferation in PDL, a standardized protocol for PDL will allow for comparison across laboratories.


Asunto(s)
Reprogramación Celular/fisiología , Células Secretoras de Insulina/citología , Páncreas/lesiones , Conductos Pancreáticos/cirugía , Animales , Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Humanos , Complicaciones Intraoperatorias/patología , Ligadura/métodos , Masculino , Ratones , Ratones Endogámicos BALB C , Páncreas/citología
7.
Diabetes ; 64(9): 3218-28, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26015547

RESUMEN

Identifying pathways for ß-cell generation is essential for cell therapy in diabetes. We investigated the potential of 17ß-estradiol (E2) and estrogen receptor (ER) signaling for stimulating ß-cell generation during embryonic development and in the severely injured adult pancreas. E2 concentration, ER activity, and number of ERα transcripts were enhanced in the pancreas injured by partial duct ligation (PDL) along with nuclear localization of ERα in ß-cells. PDL-induced proliferation of ß-cells depended on aromatase activity. The activation of Neurogenin3 (Ngn3) gene expression and ß-cell growth in PDL pancreas were impaired when ERα was turned off chemically or genetically (ERα(-/-)), whereas in situ delivery of E2 promoted ß-cell formation. In the embryonic pancreas, ß-cell replication, number of Ngn3(+) progenitor cells, and expression of key transcription factors of the endocrine lineage were decreased by ERα inactivation. The current study reveals that E2 and ERα signaling can drive ß-cell replication and formation in mouse pancreas.


Asunto(s)
Proliferación Celular/genética , Estradiol/metabolismo , Receptor alfa de Estrógeno/genética , Regulación del Desarrollo de la Expresión Génica , Células Secretoras de Insulina/metabolismo , Páncreas/embriología , Conductos Pancreáticos/lesiones , ARN Mensajero/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Núcleo Celular/metabolismo , Receptor alfa de Estrógeno/metabolismo , Células Secretoras de Insulina/citología , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Páncreas/citología
8.
Stem Cells Transl Med ; 4(6): 555-63, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25848123

RESUMEN

UNLABELLED: Macrophages are classically considered detrimental for pancreatic ß-cell survival and function, thereby contributing to ß-cell failure in both type 1 (T1D) and 2 (T2D) diabetes mellitus. In addition, adipose tissue macrophages negatively influence peripheral insulin signaling and promote obesity-induced insulin resistance in T2D. In contrast, recent data unexpectedly uncovered that macrophages are not only able to protect ß cells during pancreatitis but also to orchestrate ß-cell proliferation and regeneration after ß-cell injury. Moreover, by altering their activation state, macrophages are able to improve insulin resistance in murine models of T2D. This review will elaborate on current insights in macrophage heterogeneity and on the evolving role of pancreas macrophages during organogenesis, tissue injury, and repair. Additional identification of macrophage subtypes and of their secreted factors might ultimately translate into novel therapeutic strategies for both T1D and T2D. SIGNIFICANCE: Diabetes mellitus is a pandemic disease, characterized by severe acute and chronic complications. Macrophages have long been considered prime suspects in the pathogenesis of both type 1 and 2 diabetes mellitus. In this concise review, current insights in macrophage heterogeneity and on the, as yet, underappreciated role of alternatively activated macrophages in insulin sensing and ß-cell development/repair are reported. Further identification of macrophage subtypes and of their secreted factors might ultimately translate into novel therapeutic strategies for diabetes mellitus.


Asunto(s)
Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Macrófagos/metabolismo , Regeneración , Animales , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patología , Diabetes Mellitus Tipo 1/terapia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Diabetes Mellitus Tipo 2/terapia , Humanos , Macrófagos/patología , Pancreatitis/metabolismo , Pancreatitis/patología , Pancreatitis/terapia
9.
Eur J Immunol ; 45(5): 1482-93, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25645754

RESUMEN

Pancreas injury by partial duct ligation (PDL) activates a healing response, encompassing ß-cell neogenesis and proliferation. Macrophages (MΦs) were recently shown to promote ß-cell proliferation after PDL, but they remain poorly characterized. We assessed myeloid cell diversity and the factors driving myeloid cell dynamics following acute pancreas injury by PDL. In naive and sham-operated pancreas, the myeloid cell compartment consisted mainly of two distinct tissue-resident MΦ types, designated MHC-II(lo) and MHC-II(hi) MΦs, the latter being predominant. MHC-II(lo) and MHC-II(hi) pancreas MΦs differed at the molecular level, with MHC-II(lo) MΦs being more M2-activated. After PDL, there was an early surge of Ly6C(hi) monocyte infiltration in the pancreas, followed by a transient MHC-II(lo) MΦ peak and ultimately a restoration of the MHC-II(hi) MΦ-dominated steady-state equilibrium. These intricate MΦ dynamics in PDL pancreas depended on monocyte recruitment by C-C chemokine receptor 2 and macrophage-colony stimulating factor receptor as well as on macrophage-colony stimulating factor receptor-dependent local MΦ proliferation. Functionally, MHC-II(lo) MΦs were more angiogenic. We further demonstrated that, at least in C-C chemokine receptor 2-KO mice, tissue MΦs, rather than Ly6C(hi) monocyte-derived MΦs, contributed to ß-cell proliferation. Together, our study fully characterizes the MΦ subsets in the pancreas and clarifies the complex dynamics of MΦs after PDL injury.


Asunto(s)
Macrófagos/inmunología , Macrófagos/patología , Monocitos/inmunología , Monocitos/patología , Páncreas/inmunología , Páncreas/lesiones , Animales , Antígenos Ly/metabolismo , Movimiento Celular/inmunología , Proliferación Celular , Microambiente Celular/inmunología , Antígenos de Histocompatibilidad Clase II/metabolismo , Ligadura , Activación de Macrófagos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Células Mieloides/clasificación , Células Mieloides/inmunología , Células Mieloides/patología , Páncreas/patología , Conductos Pancreáticos/lesiones , Receptor de Factor Estimulante de Colonias de Macrófagos/metabolismo , Regeneración/inmunología
11.
Diabetologia ; 57(7): 1420-7, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24759958

RESUMEN

AIMS/HYPOTHESIS: IL-6 was recently shown to control alpha cell expansion. As beta cells expand following partial pancreatic-duct ligation (PDL) in adult mice, we investigated whether PDL also causes alpha cells to expand and whether IL-6 signalling is involved. As alpha cells can reprogramme to beta cells in a number of beta cell (re)generation models, we examined whether this phenomenon also exists in PDL pancreas. METHODS: Total alpha cell volume, alpha cell size and total glucagon content were evaluated in equivalent portions of PDL- and sham-operated mouse pancreases. Proliferation of glucagon(+) cells was assessed by expression of the proliferation marker Ki67. Inter-conversions between alpha and beta cells were monitored in transgenic mice with conditional cell-type-specific labelling. The role of IL-6 in regulating alpha cell proliferation was evaluated by in situ delivery of an IL-6-inactivating antibody. RESULTS: In response to PDL surgery, alpha cell volume in the ligated tissue was increased threefold, glucagon content fivefold and alpha cell size by 10%. Activation of alpha cell proliferation in PDL pancreas required IL-6 signalling. A minor fraction of alpha cells derived from beta cells, whereas no evidence for alpha to beta cell conversion was obtained. CONCLUSIONS/INTERPRETATION: In PDL-injured adult mouse pancreas, new alpha cells are generated mainly by IL-6-dependent self-duplication and seldom by reprogramming of beta cells.


Asunto(s)
Proliferación Celular/fisiología , Células Secretoras de Glucagón/citología , Interleucina-6/metabolismo , Conductos Pancreáticos/citología , Animales , Tamaño de la Célula , Células Secretoras de Glucagón/metabolismo , Ligadura , Ratones , Conductos Pancreáticos/metabolismo
12.
Nat Biotechnol ; 32(1): 76-83, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24240391

RESUMEN

Reprogramming of pancreatic exocrine cells into cells resembling beta cells may provide a strategy for treating diabetes. Here we show that transient administration of epidermal growth factor and ciliary neurotrophic factor to adult mice with chronic hyperglycemia efficiently stimulates the conversion of terminally differentiated acinar cells to beta-like cells. Newly generated beta-like cells are epigenetically reprogrammed, functional and glucose responsive, and they reinstate normal glycemic control for up to 248 d. The regenerative process depends on Stat3 signaling and requires a threshold number of Neurogenin 3 (Ngn3)-expressing acinar cells. In contrast to previous work demonstrating in vivo conversion of acinar cells to beta-like cells by viral delivery of exogenous transcription factors, our approach achieves acinar-to-beta-cell reprogramming through transient cytokine exposure rather than genetic modification.


Asunto(s)
Factor Neurotrófico Ciliar/administración & dosificación , Diabetes Mellitus/tratamiento farmacológico , Factor de Crecimiento Epidérmico/administración & dosificación , Células Secretoras de Insulina/efectos de los fármacos , Células Acinares/efectos de los fármacos , Células Acinares/patología , Animales , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Factor Neurotrófico Ciliar/genética , Diabetes Mellitus/genética , Factor de Crecimiento Epidérmico/genética , Hiperglucemia/tratamiento farmacológico , Células Secretoras de Insulina/patología , Ratones , Ratones Endogámicos NOD/genética , Transducción de Señal
13.
Diabetologia ; 57(1): 140-7, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24121626

RESUMEN

AIMS/HYPOTHESIS: Vascular endothelial growth factor (VEGF) has been recognised by loss-of-function experiments as a pleiotropic factor with importance in embryonic pancreas development and postnatal beta cell function. Chronic, nonconditional overexpression of VEGF-A has a deleterious effect on beta cell development and function. We report, for the first time, a conditional gain-of-function study to evaluate the effect of transient VEGF-A overexpression by adult pancreatic beta cells on islet vasculature and beta cell proliferation and survival, under both normal physiological and injury conditions. METHODS: In a transgenicmouse strain, overexpressing VEGF-A in a doxycycline-inducible and beta cell-specific manner, we evaluated the ability of VEGF-A to affect islet vessel density, beta cell proliferation and protection of the adult beta cell mass from toxin-induced injury. RESULTS: Short-term VEGF-A overexpression resulted in islet hypervascularisation, increased beta cell proliferation and protection from toxin-mediated beta cell death, and thereby prevented the development of hyperglycaemia. Extended overexpression of VEGF-A led to impaired glucose tolerance, elevated fasting glycaemia and a decreased beta cell mass. CONCLUSIONS/INTERPRETATION: Overexpression of VEGF-A in beta cells time-dependently affects glycometabolic control and beta cell protection and proliferation. These data nourish further studies to examine the role of controlled VEGF delivery in (pre)clinical applications aimed at protecting and/or restoring the injured beta cell mass.


Asunto(s)
Diabetes Mellitus/prevención & control , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Proliferación Celular , Supervivencia Celular/fisiología , Diabetes Mellitus/metabolismo , Islotes Pancreáticos/irrigación sanguínea , Islotes Pancreáticos/metabolismo , Ratones , Ratones Transgénicos , Ratas , Factor A de Crecimiento Endotelial Vascular/genética
14.
Diabetologia ; 56(12): 2647-50, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24026213

RESUMEN

AIMS/HYPOTHESIS: Long-term labelling of mice with halogenated thymidine analogues is an established method for quantifying the contribution of beta cell proliferation to in vivo beta cell mass expansion in (re)generation models. The method is believed to give accurate information on the accrued number of cycling beta cells over a period of time. Multiple thymidine analogue labelling is applied for evaluating the duration of postmitotic quiescence in beta cells. We hypothesise, however, that long-term labelling by thymidine analogues hampers beta cell proliferation. METHODS: Thymidine analogues were administered for 7-14 days via the i.p. route to neonatal mice, or via drinking water to young mice with normal pancreases or adult mice with injured pancreases. The proliferation of insulin-positive cells was assessed by their expression of the proliferation markers Ki67 or phosphorylated histone H3 and by their incorporation of nucleotide analogues. RESULTS: In the mouse models of beta cell proliferation investigated herein, long-term administration of thymidine analogues decreased the percentage of Ki67(+) and phosphorylated histone H3(+) beta cells as compared with administration of normal drinking water. Proliferation was restored by washout of the analogue. Labelling with one analogue decreased the subsequent incorporation of another analogue by beta cells. CONCLUSIONS/INTERPRETATION: Long-term labelling with halogenated thymidine analogues is a biased method that underestimates the proliferation and re-division potential of mouse beta cells.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Histonas/metabolismo , Células Secretoras de Insulina/metabolismo , Antígeno Ki-67/metabolismo , Timidina/análogos & derivados , Timidina/farmacología , Animales , Ciclo Celular/efectos de los fármacos , División Celular/efectos de los fármacos , Células Secretoras de Insulina/efectos de los fármacos , Ratones , Ratones Endogámicos BALB C , Índice Mitótico , Modelos Animales , Coloración y Etiquetado/métodos , Timidina/administración & dosificación
15.
Diabetes ; 62(12): 4165-73, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23974922

RESUMEN

It is generally accepted that vascularization and oxygenation of pancreatic islets are essential for the maintenance of an optimal ß-cell mass and function and that signaling by vascular endothelial growth factor (VEGF) is crucial for pancreas development, insulin gene expression/secretion, and (compensatory) ß-cell proliferation. A novel mouse model was designed to allow conditional production of human sFlt1 by ß-cells in order to trap VEGF and study the effect of time-dependent inhibition of VEGF signaling on adult ß-cell fate and metabolism. Secretion of sFlt1 by adult ß-cells resulted in a rapid regression of blood vessels and hypoxia within the islets. Besides blunted insulin release, ß-cells displayed a remarkable capacity for coping with these presumed unfavorable conditions: even after prolonged periods of blood vessel ablation, basal and stimulated blood glucose levels were only slightly increased, while ß-cell proliferation and mass remained unaffected. Moreover, ablation of blood vessels did not prevent ß-cell generation after severe pancreas injury by partial pancreatic duct ligation or partial pancreatectomy. Our data thus argue against a major role of blood vessels to preserve adult ß-cell generation and function, restricting their importance to facilitating rapid and adequate insulin delivery.


Asunto(s)
Hipoxia/fisiopatología , Células Secretoras de Insulina/fisiología , Isquemia/fisiopatología , Islotes Pancreáticos/irrigación sanguínea , Neovascularización Patológica/fisiopatología , Animales , Hipoxia/metabolismo , Insulina/metabolismo , Isquemia/metabolismo , Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/fisiopatología , Ratones , Neovascularización Patológica/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo
16.
Development ; 140(4): 751-64, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23325761

RESUMEN

Pancreatic multipotent progenitor cells (MPCs) produce acinar, endocrine and duct cells during organogenesis, but their existence and location in the mature organ remain contentious. We used inducible lineage-tracing from the MPC-instructive gene Ptf1a to define systematically in mice the switch of Ptf1a(+) MPCs to unipotent proacinar competence during the secondary transition, their rapid decline during organogenesis, and absence from the mature organ. Between E11.5 and E15.5, we describe tip epithelium heterogeneity, suggesting that putative Ptf1a(+)Sox9(+)Hnf1ß(+) MPCs are intermingled with Ptf1a(HI)Sox9(LO) proacinar progenitors. In the adult, pancreatic duct ligation (PDL) caused facultative reactivation of multipotency factors (Sox9 and Hnf1ß) in Ptf1a(+) acini, which undergo rapid reprogramming to duct cells and longer-term reprogramming to endocrine cells, including insulin(+) ß-cells that are mature by the criteria of producing Pdx1(HI), Nkx6.1(+) and MafA(+). These Ptf1a lineage-derived endocrine/ß-cells are likely formed via Ck19(+)/Hnf1ß(+)/Sox9(+) ductal and Ngn3(+) endocrine progenitor intermediates. Acinar to endocrine/ß-cell transdifferentiation was enhanced by combining PDL with pharmacological elimination of pre-existing ß-cells. Thus, we show that acinar cells, without exogenously introduced factors, can regain aspects of embryonic multipotentiality under injury, and convert into mature ß-cells.


Asunto(s)
Diferenciación Celular/fisiología , Células Madre Multipotentes/fisiología , Organogénesis/fisiología , Páncreas/embriología , Recuperación de la Función/fisiología , Transducción de Señal/fisiología , Factores de Transcripción/metabolismo , Células Acinares/citología , Animales , Pesos y Medidas Corporales , Técnicas de Sustitución del Gen , Ratones , Microscopía Confocal , Células Madre Multipotentes/metabolismo , Páncreas/fisiología , Tamoxifeno , Factores de Tiempo
17.
PLoS One ; 7(5): e37055, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22606327

RESUMEN

AIMS/HYPOTHESIS: Duct cells isolated from adult human pancreas can be reprogrammed to express islet beta cell genes by adenoviral transduction of the developmental transcription factor neurogenin3 (Ngn3). In this study we aimed to fully characterize the extent of this reprogramming and intended to improve it. METHODS: The extent of the Ngn3-mediated duct-to-endocrine cell reprogramming was measured employing genome wide mRNA profiling. By modulation of the Delta-Notch signaling or addition of pancreatic endocrine transcription factors Myt1, MafA and Pdx1 we intended to improve the reprogramming. RESULTS: Ngn3 stimulates duct cells to express a focused set of genes that are characteristic for islet endocrine cells and/or neural tissues. This neuro-endocrine shift however, is incomplete with less than 10% of full duct-to-endocrine reprogramming achieved. Transduction of exogenous Ngn3 activates endogenous Ngn3 suggesting auto-activation of this gene. Furthermore, pancreatic endocrine reprogramming of human duct cells can be moderately enhanced by inhibition of Delta-Notch signaling as well as by co-expressing the transcription factor Myt1, but not MafA and Pdx1. CONCLUSIONS/INTERPRETATION: The results provide further insight into the plasticity of adult human duct cells and suggest measurable routes to enhance Ngn3-mediated in vitro reprogramming protocols for regenerative beta cell therapy in diabetes.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Transdiferenciación Celular/genética , Transdiferenciación Celular/fisiología , Proteínas del Tejido Nervioso/metabolismo , Conductos Pancreáticos/citología , Conductos Pancreáticos/metabolismo , Adulto , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Sitios de Unión , Células Cultivadas , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Perfilación de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Factores de Transcripción Maf de Gran Tamaño/genética , Factores de Transcripción Maf de Gran Tamaño/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Proteínas del Tejido Nervioso/genética , Regiones Promotoras Genéticas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores Notch/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transducción de Señal , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transducción Genética
18.
J Endocrinol ; 208(2): 161-9, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21084384

RESUMEN

Sulfonylurea and metformin are used in the treatment of diabetes. Their chronic effects on ß cells are not well known. We have shown that sustained exposure of rat ß cells to glibenclamide increased their protein synthesis activity, while metformin caused an inhibition. The effect of glibenclamide was attributed to an activation of translation factors. This study examines whether both drugs interact at the level of protein translation in ß cells. Purified rat ß cells were cultured with and without glibenclamide and metformin before measurement of protein and insulin synthesis, abundance of (phosphorylated) translation factors, and cell viability. A 24 h exposure to metformin stimulated AMP-activated protein kinase (AMPK), suppressed activation of translation factors- both the mammalian target of rapamycin (mTOR; also known as mechanistic target of rapamycin, MTOR)-dependent ones (eukaryotic initiation factor 4E-binding protein 1 and ribosomal protein S6) and the mTOR-independent eukaryotic elongation factor 2-, and inhibited protein synthesis; a 72 h exposure resulted in 50% dead cells. These effects were counteracted by addition of glibenclamide, the action of which was blocked by the mTOR inhibitor rapamycin and the protein kinase A (PKA) inhibitor Rp-8-Br-cAMPs. In conclusion, metformin activates AMPK in ß cells leading to suppression of protein translation through mTOR-dependent and -independent signaling. Glibenclamide antagonizes these metformin effects through activation of mTOR- and PKA-dependent signaling pathways.


Asunto(s)
Gliburida/farmacología , Hipoglucemiantes/farmacología , Células Secretoras de Insulina/metabolismo , Metformina/farmacología , Biosíntesis de Proteínas/efectos de los fármacos , 8-Bromo Monofosfato de Adenosina Cíclica/análogos & derivados , 8-Bromo Monofosfato de Adenosina Cíclica/farmacología , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Proteínas Portadoras/metabolismo , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Interacciones Farmacológicas , Activación Enzimática/efectos de los fármacos , Glucosa/farmacología , Hipoglucemiantes/antagonistas & inhibidores , Hipoglucemiantes/toxicidad , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/fisiología , Péptidos y Proteínas de Señalización Intracelular , Masculino , Metformina/antagonistas & inhibidores , Fosfoproteínas/metabolismo , Proteínas/genética , Ratas , Ratas Wistar , Proteína S6 Ribosómica/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Serina-Treonina Quinasas TOR/metabolismo , Tionucleótidos/farmacología
19.
Genome Res ; 20(6): 722-32, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20395405

RESUMEN

The epigenome changes that underlie cellular differentiation in developing organisms are poorly understood. To gain insights into how pancreatic beta-cells are programmed, we profiled key histone methylations and transcripts in embryonic stem cells, multipotent progenitors of the nascent embryonic pancreas, purified beta-cells, and 10 differentiated tissues. We report that despite their endodermal origin, beta-cells show a transcriptional and active chromatin signature that is most similar to ectoderm-derived neural tissues. In contrast, the beta-cell signature of trimethylated H3K27, a mark of Polycomb-mediated repression, clusters with pancreatic progenitors, acinar cells and liver, consistent with the epigenetic transmission of this mark from endoderm progenitors to their differentiated cellular progeny. We also identified two H3K27 methylation events that arise in the beta-cell lineage after the pancreatic progenitor stage. One is a wave of cell-selective de novo H3K27 trimethylation in non-CpG island genes. Another is the loss of bivalent and H3K27me3-repressed chromatin in a core program of neural developmental regulators that enables a convergence of the gene activity state of beta-cells with that of neural cells. These findings reveal a dynamic regulation of Polycomb repression programs that shape the identity of differentiated beta-cells.


Asunto(s)
Regulación hacia Abajo , Regulación del Desarrollo de la Expresión Génica , Islotes Pancreáticos/metabolismo , Páncreas/embriología , Proteínas Represoras/genética , Animales , Separación Celular , Células Cultivadas , Inmunoprecipitación de Cromatina , Epigénesis Genética , Citometría de Flujo , Histonas/metabolismo , Masculino , Metilación , Ratones , Ratones Endogámicos C57BL , Páncreas/citología , Proteínas del Grupo Polycomb
20.
Diabetes ; 59(6): 1435-44, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20299467

RESUMEN

OBJECTIVE: Generating functional beta-cells by inducing their proliferation may provide new perspectives for cell therapy in diabetes. Transcription factor E2F1 controls G(1)- to S-phase transition during the cycling of many cell types and is required for pancreatic beta-cell growth and function. However, the consequences of overexpression of E2F1 in beta-cells are unknown. RESEARCH DESIGN AND METHODS: The effects of E2F1 overexpression on beta-cell proliferation and function were analyzed in isolated rat beta-cells and in transgenic mice. RESULTS: Adenovirus AdE2F1-mediated overexpression of E2F1 increased the proliferation of isolated primary rat beta-cells 20-fold but also enhanced beta-cell death. Coinfection with adenovirus AdAkt expressing a constitutively active form of Akt (protein kinase B) suppressed beta-cell death to control levels. At 48 h after infection, the total beta-cell number and insulin content were, respectively, 46 and 79% higher in AdE2F1+AdAkt-infected cultures compared with untreated. Conditional overexpression of E2F1 in mice resulted in a twofold increase of beta-cell proliferation and a 70% increase of pancreatic insulin content, but did not increase beta-cell mass. Glucose-challenged insulin release was increased, and the mice showed protection against toxin-induced diabetes. CONCLUSIONS: Overexpression of E2F1, either in vitro or in vivo, can stimulate beta-cell proliferation activity. In vivo E2F1 expression significantly increases the insulin content and function of adult beta-cells, making it a strategic target for therapeutic manipulation of beta-cell function.


Asunto(s)
Factor de Transcripción E2F1/genética , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/fisiología , Animales , Ciclo Celular/fisiología , Muerte Celular , División Celular , Factor de Transcripción E2F1/deficiencia , Regulación de la Expresión Génica , Inmunohistoquímica , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Páncreas/anatomía & histología , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...