Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Circ Genom Precis Med ; 17(3): e003978, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38623759

RESUMEN

BACKGROUND: Vascular Ehlers-Danlos syndrome (vEDS) is a rare connective tissue disorder with a high risk for arterial, bowel, and uterine rupture, caused by heterozygous pathogenic variants in COL3A1. The aim of this cohort study is to provide further insights into the natural history of vEDS and describe genotype-phenotype correlations in a Dutch multicenter cohort to optimize patient care and increase awareness of the disease. METHODS: Individuals with vEDS throughout the Netherlands were included. The phenotype was charted by retrospective analysis of molecular and clinical data, combined with a one-time physical examination. RESULTS: A total of 142 individuals (50% female) participated the study, including 46 index patients (32%). The overall median age at genetic diagnosis was 41.0 years. More than half of the index patients (54.3%) and relatives (53.1%) had a physical appearance highly suggestive of vEDS. In these individuals, major events were not more frequent (P=0.90), but occurred at a younger age (P=0.01). A major event occurred more often and at a younger age in men compared with women (P<0.001 and P=0.004, respectively). Aortic aneurysms (P=0.003) and pneumothoraces (P=0.029) were more frequent in men. Aortic dissection was more frequent in individuals with a COL3A1 variant in the first quarter of the collagen helical domain (P=0.03). CONCLUSIONS: Male sex, type and location of the COL3A1 variant, and physical appearance highly suggestive of vEDS are risk factors for the occurrence and early age of onset of major events. This national multicenter cohort study of Dutch individuals with vEDS provides a valuable basis for improving guidelines for the diagnosing, follow-up, and treatment of individuals with vEDS.


Asunto(s)
Colágeno Tipo III , Síndrome de Ehlers-Danlos , Humanos , Síndrome de Ehlers-Danlos/genética , Síndrome de Ehlers-Danlos/epidemiología , Femenino , Masculino , Países Bajos/epidemiología , Adulto , Colágeno Tipo III/genética , Persona de Mediana Edad , Estudios Retrospectivos , Estudios de Cohortes , Fenotipo , Adolescente , Estudios de Asociación Genética , Adulto Joven , Anciano , Síndrome de Ehlers-Danlos Tipo IV
2.
Hum Mol Genet ; 33(12): 1090-1104, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38538566

RESUMEN

RATIONALE: Pathogenic (P)/likely pathogenic (LP) SMAD3 variants cause Loeys-Dietz syndrome type 3 (LDS3), which is characterized by arterial aneurysms, dissections and tortuosity throughout the vascular system combined with osteoarthritis. OBJECTIVES: Investigate the impact of P/LP SMAD3 variants with functional tests on patient-derived fibroblasts and vascular smooth muscle cells (VSMCs), to optimize interpretation of SMAD3 variants. METHODS: A retrospective analysis on clinical data from individuals with a P/LP SMAD3 variant and functional analyses on SMAD3 patient-derived VSMCs and SMAD3 patient-derived fibroblasts, differentiated into myofibroblasts. RESULTS: Individuals with dominant negative (DN) SMAD3 variant in the MH2 domain exhibited more major events (66.7% vs. 44.0%, P = 0.054), occurring at a younger age compared to those with haploinsufficient (HI) variants. The age at first major event was 35.0 years [IQR 29.0-47.0] in individuals with DN variants in MH2, compared to 46.0 years [IQR 40.0-54.0] in those with HI variants (P = 0.065). Fibroblasts carrying DN SMAD3 variants displayed reduced differentiation potential, contrasting with increased differentiation potential in HI SMAD3 variant fibroblasts. HI SMAD3 variant VSMCs showed elevated SMA expression and altered expression of alternative MYH11 isoforms. DN SMAD3 variant myofibroblasts demonstrated reduced extracellular matrix formation compared to control cell lines. CONCLUSION: Distinguishing between P/LP HI and DN SMAD3 variants can be achieved by assessing differentiation potential, and SMA and MYH11 expression. The differences between DN and HI SMAD3 variant fibroblasts and VSMCs potentially contribute to the differences in disease manifestation. Notably, myofibroblast differentiation seems a suitable alternative in vitro test system compared to VSMCs.


Asunto(s)
Fibroblastos , Estudios de Asociación Genética , Síndrome de Loeys-Dietz , Músculo Liso Vascular , Proteína smad3 , Humanos , Proteína smad3/genética , Proteína smad3/metabolismo , Síndrome de Loeys-Dietz/genética , Síndrome de Loeys-Dietz/patología , Masculino , Femenino , Fibroblastos/metabolismo , Adulto , Persona de Mediana Edad , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Diferenciación Celular/genética , Línea Celular , Miocitos del Músculo Liso/metabolismo , Estudios Retrospectivos , Fenotipo , Miofibroblastos/metabolismo , Miofibroblastos/patología , Mutación
4.
Am J Hum Genet ; 110(2): 251-272, 2023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-36669495

RESUMEN

For neurodevelopmental disorders (NDDs), a molecular diagnosis is key for management, predicting outcome, and counseling. Often, routine DNA-based tests fail to establish a genetic diagnosis in NDDs. Transcriptome analysis (RNA sequencing [RNA-seq]) promises to improve the diagnostic yield but has not been applied to NDDs in routine diagnostics. Here, we explored the diagnostic potential of RNA-seq in 96 individuals including 67 undiagnosed subjects with NDDs. We performed RNA-seq on single individuals' cultured skin fibroblasts, with and without cycloheximide treatment, and used modified OUTRIDER Z scores to detect gene expression outliers and mis-splicing by exonic and intronic outliers. Analysis was performed by a user-friendly web application, and candidate pathogenic transcriptional events were confirmed by secondary assays. We identified intragenic deletions, monoallelic expression, and pseudoexonic insertions but also synonymous and non-synonymous variants with deleterious effects on transcription, increasing the diagnostic yield for NDDs by 13%. We found that cycloheximide treatment and exonic/intronic Z score analysis increased detection and resolution of aberrant splicing. Importantly, in one individual mis-splicing was found in a candidate gene nearly matching the individual's specific phenotype. However, pathogenic splicing occurred in another neuronal-expressed gene and provided a molecular diagnosis, stressing the need to customize RNA-seq. Lastly, our web browser application allowed custom analysis settings that facilitate diagnostic application and ranked pathogenic transcripts as top candidates. Our results demonstrate that RNA-seq is a complementary method in the genomic diagnosis of NDDs and, by providing accessible analysis with improved sensitivity, our transcriptome analysis approach facilitates wider implementation of RNA-seq in routine genome diagnostics.


Asunto(s)
Perfilación de la Expresión Génica , Trastornos del Neurodesarrollo , Humanos , RNA-Seq , Cicloheximida , Análisis de Secuencia de ARN/métodos , Trastornos del Neurodesarrollo/diagnóstico , Trastornos del Neurodesarrollo/genética
5.
Eur J Med Genet ; 66(1): 104673, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36460281

RESUMEN

Heritable thoracic aortic diseases (HTAD) are rare pathologies associated with thoracic aortic aneurysms and dissection, which can be syndromic or non-syndromic. They may result from genetic defects. Associated genes identified to date are classified into those encoding components of the (a) extracellular matrix (b) TGFß pathway and (c) smooth muscle contractile mechanism. Timely diagnosis allows for prompt aortic surveillance and prophylactic surgery, hence improving life expectancy and reducing maternal complications as well as providing reassurance to family members when a diagnosis is ruled out. This document is an expert opinion reflecting strategies put forward by medical experts and patient representatives involved in the HTAD Rare Disease Working Group of VASCERN. It aims to provide a patient pathway that improves patient care by diminishing time to diagnosis, facilitating the establishment of a correct diagnosis using molecular genetics when possible, excluding the diagnosis in unaffected persons through appropriate family screening and avoiding overuse of resources. It is being recommended that patients are referred to an expert centre for further evaluation if they meet at least one of the following criteria: (1) thoracic aortic dissection (<70 years if hypertensive; all ages if non-hypertensive), (2) thoracic aortic aneurysm (all adults with Z score >3.5 or 2.5-3.5 if non-hypertensive or hypertensive and <60 years; all children with Z score >3), (3) family history of HTAD with/without a pathogenic variant in a gene linked to HTAD, (4) ectopia lentis without other obvious explanation and (5) a systemic score of >5 in adults and >3 in children. Aortic imaging primarily relies on transthoracic echocardiography with magnetic resonance imaging or computed tomography as needed. Genetic testing should be considered in those with a high suspicion of underlying genetic aortopathy. Though panels vary among centers, for patients with thoracic aortic aneurysm or dissection or systemic features these should include genes with a definitive or strong association to HTAD. Genetic cascade screening and serial aortic imaging should be considered for family screening and follow-up. In conclusion, the implementation of these strategies should help standardise the diagnostic work-up and follow-up of patients with suspected HTAD and the screening of their relatives.


Asunto(s)
Aneurisma de la Aorta Torácica , Disección Aórtica , Adulto , Niño , Humanos , Pruebas Genéticas , Aneurisma de la Aorta Torácica/genética , Atención al Paciente
6.
Am J Med Genet A ; 191(2): 479-489, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36380655

RESUMEN

To optimize care for children with Marfan syndrome (MFS) in the Netherlands, Dutch MFS growth charts were constructed. Additionally, we aimed to investigate the effect of FBN1 variant type (haploinsufficiency [HI]/dominant negative [DN]) on growth, and compare MFS-related height increase across populations. Height and weight data of individuals with MFS aged 0-21 years were retrospectively collected. Generalized Additive Models for Location, Scale and Shape (GAMLSS) was used for growth chart modeling. To investigate genotype-phenotype relationships, FBN1 variant type was included as an independent variable in height-for-age and BMI-for-age models. MFS-related height increase was compared with that of previous MFS growth studies from the United States, Korea, and France. Height and weight data of 389 individuals with MFS were included (210 males). Height-for-age, BMI-for-age, and weight-for-height charts reflected the tall and slender MFS habitus throughout childhood. Mean increase in height of individuals with MFS compared with the general Dutch population was significantly lower than in the other three MFS populations compared to their reference populations. FBN1-HI variants were associated with taller height in both sexes, and decreased BMI in females (p-values <0.05). This Dutch MFS growth study broadens the notion that genetic background and MFS variant type (HI/DN) influence tall and slender stature in MFS.


Asunto(s)
Síndrome de Marfan , Masculino , Femenino , Humanos , Síndrome de Marfan/diagnóstico , Síndrome de Marfan/epidemiología , Síndrome de Marfan/genética , Gráficos de Crecimiento , Estudios Retrospectivos , Países Bajos/epidemiología , Mutación , Genotipo , Fenotipo , Fibrilina-1/genética
7.
Brain ; 146(2): 534-548, 2023 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-35979925

RESUMEN

We describe an autosomal dominant disorder associated with loss-of-function variants in the Cell cycle associated protein 1 (CAPRIN1; MIM*601178). CAPRIN1 encodes a ubiquitous protein that regulates the transport and translation of neuronal mRNAs critical for synaptic plasticity, as well as mRNAs encoding proteins important for cell proliferation and migration in multiple cell types. We identified 12 cases with loss-of-function CAPRIN1 variants, and a neurodevelopmental phenotype characterized by language impairment/speech delay (100%), intellectual disability (83%), attention deficit hyperactivity disorder (82%) and autism spectrum disorder (67%). Affected individuals also had respiratory problems (50%), limb/skeletal anomalies (50%), developmental delay (42%) feeding difficulties (33%), seizures (33%) and ophthalmologic problems (33%). In patient-derived lymphoblasts and fibroblasts, we showed a monoallelic expression of the wild-type allele, and a reduction of the transcript and protein compatible with a half dose. To further study pathogenic mechanisms, we generated sCAPRIN1+/- human induced pluripotent stem cells via CRISPR-Cas9 mutagenesis and differentiated them into neuronal progenitor cells and cortical neurons. CAPRIN1 loss caused reduced neuronal processes, overall disruption of the neuronal organization and an increased neuronal degeneration. We also observed an alteration of mRNA translation in CAPRIN1+/- neurons, compatible with its suggested function as translational inhibitor. CAPRIN1+/- neurons also showed an impaired calcium signalling and increased oxidative stress, two mechanisms that may directly affect neuronal networks development, maintenance and function. According to what was previously observed in the mouse model, measurements of activity in CAPRIN1+/- neurons via micro-electrode arrays indicated lower spike rates and bursts, with an overall reduced activity. In conclusion, we demonstrate that CAPRIN1 haploinsufficiency causes a novel autosomal dominant neurodevelopmental disorder and identify morphological and functional alterations associated with this disorder in human neuronal models.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Trastorno del Espectro Autista , Células Madre Pluripotentes Inducidas , Trastornos del Desarrollo del Lenguaje , Trastornos del Neurodesarrollo , Animales , Ratones , Humanos , Trastorno del Espectro Autista/genética , Haploinsuficiencia/genética , Trastornos del Neurodesarrollo/complicaciones , Trastornos del Neurodesarrollo/genética , Proteínas/genética , Proteínas de Ciclo Celular/genética
8.
Hum Mutat ; 43(12): 2130-2140, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36251260

RESUMEN

Neurofibromatosis type 1 (NF1) is caused by inactivating mutations in NF1. Due to the size, complexity, and high mutation rate at the NF1 locus, the identification of causative variants can be challenging. To obtain a molecular diagnosis in 15 individuals meeting diagnostic criteria for NF1, we performed transcriptome analysis (RNA-seq) on RNA obtained from cultured skin fibroblasts. In each case, routine molecular DNA diagnostics had failed to identify a disease-causing variant in NF1. A pathogenic variant or abnormal mRNA splicing was identified in 13 cases: 6 deep intronic variants and 2 transposon insertions causing noncanonical splicing, 3 postzygotic changes, 1 branch point mutation and, in 1 case, abnormal splicing for which the responsible DNA change remains to be identified. These findings helped resolve the molecular findings for an additional 17 individuals in multiple families with NF1, demonstrating the utility of skin-fibroblast-based transcriptome analysis for molecular diagnostics. RNA-seq improves mutation detection in NF1 and provides a powerful complementary approach to DNA-based methods. Importantly, our approach is applicable to other genetic disorders, particularly those caused by a wide variety of variants in a limited number of genes and specifically for individuals in whom routine molecular DNA diagnostics did not identify the causative variant.


Asunto(s)
Neurofibromatosis 1 , Humanos , Neurofibromatosis 1/diagnóstico , Neurofibromatosis 1/genética , Neurofibromatosis 1/patología , Mutación , Empalme del ARN/genética , ADN , Fibroblastos/patología , Neurofibromina 1/genética
9.
Circ Genom Precis Med ; 15(5): e002981, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36178741

RESUMEN

BACKGROUND: This study aimed to describe the current practice and results of genetic evaluation in Dutch children with dilated cardiomyopathy and to evaluate genotype-phenotype correlations that may guide prognosis. METHODS: We performed a multicenter observational study in children diagnosed with dilated cardiomyopathy, from 2010 to 2017. RESULTS: One hundred forty-four children were included. Initial diagnostic categories were idiopathic dilated cardiomyopathy in 67 children (47%), myocarditis in 23 (16%), neuromuscular in 7 (5%), familial in 18 (13%), inborn error of metabolism in 4 (3%), malformation syndrome in 2 (1%), and "other" in 23 (16%). Median follow-up time was 2.1 years [IQR 1.0-4.3]. Hundred-seven patients (74%) underwent genetic testing. We found a likely pathogenic or pathogenic variant in 38 children (36%), most often in MYH7 (n = 8). In 1 patient initially diagnosed with myocarditis, a pathogenic LMNA variant was found. During the study, 39 patients (27%) reached study endpoint (SE: all-cause death or heart transplantation). Patients with a likely pathogenic or pathogenic variant were more likely to reach SE compared with those without (hazard ratio 2.8; 95% CI 1.3-5.8, P = 0.007), while transplant-free survival was significantly lower (P = 0.006). Clinical characteristics at diagnosis did not differ between the 2 groups. CONCLUSIONS: Genetic testing is a valuable tool for predicting prognosis in children with dilated cardiomyopathy, with carriers of a likely pathogenic or pathogenic variant having a worse prognosis overall. Genetic testing should be incorporated in clinical work-up of all children with dilated cardiomyopathy regardless of presumed disease pathogenesis.


Asunto(s)
Cardiomiopatía Dilatada , Miocarditis , Humanos , Cardiomiopatía Dilatada/diagnóstico , Cardiomiopatía Dilatada/genética , Miocarditis/genética , Pruebas Genéticas , Estudios de Asociación Genética , Medición de Riesgo
10.
Genet Med ; 24(10): 2112-2122, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36053285

RESUMEN

PURPOSE: Heterozygous pathogenic/likely pathogenic (P/LP) variants in the ACTA2 gene confer a high risk for thoracic aortic aneurysms and aortic dissections. This retrospective multicenter study elucidates the clinical outcome of ACTA2-related vasculopathies. METHODS: Index patients and relatives with a P/LP variant in ACTA2 were included. Data were collected through retrospective review of medical records using a standardized questionnaire. RESULTS: A total of 49 individuals from 28 families participated in our study. In total, 20 different ACTA2 variants were detected. Aortic events occurred in 65% of the cases (78.6% index patients and 47.6% relatives). Male sex and hypertension emerged as significantly associated with aortic events. Of 20 individuals, 5 had an aortic diameter of <45 mm (1.77 inches) at the time of the type A dissection. Mean age at first aortic event was 49.0 ± 12.4 years. Severe surgical complications for type A and type B dissection occurred in 25% and 16.7% of the cases and in-hospital mortality rates were 9.5% and 0%, respectively. CONCLUSION: P/LP ACTA2 variants are associated with an increased risk for an aortic event and age-related penetrance, which emphasizes the importance of early recognition of the disease. Caregivers should be aware of the risk for aortic dissections, even in individuals with aortic diameters within the normal range.


Asunto(s)
Aneurisma de la Aorta Torácica , Disección Aórtica , Actinas/genética , Adulto , Disección Aórtica/genética , Aorta , Aneurisma de la Aorta Torácica/epidemiología , Aneurisma de la Aorta Torácica/genética , Estudios de Cohortes , Humanos , Masculino , Persona de Mediana Edad , Mutación
11.
Eur J Med Genet ; 65(10): 104593, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35964930

RESUMEN

INTRODUCTION: The diagnosis of Ehlers-Danlos syndrome is usually based on well-defined diagnostic criteria and the result of DNA investigation. Classical (cEDS) and vascular type (vEDS) are the most prevalent subtypes and are caused by heterozygous pathogenic variants in COL5A1, COL5A2, COL1A1 or, respectively, in COL3A1. We describe 3 cases with contiguous deletions resulting in haploinsufficiency of both genes with relative mild features of connective tissue disease. PATIENTS AND METHODS: Information on medical history, physical information, genetic results (CNV-analysis) and imaging were obtained from the medical file. RESULTS: The first patient was a 31 yr old female, diagnosed during pregnancy after the NIPT result showed an interstitial deletion of 2.3 Mb on chromosome 2q32.2, confirmed by XON array. She had normal aortic diameters. She had no signs of cEDS or vEDS except for a relatively thin skin with increased visibility of the veins. Her father died suddenly of a type A/B dissection at the age of 62 years. The second patient was diagnosed at the age of 10 years after she was referred because of her intellectual disability, autism and constipation. She was known with a thin and vulnerable skin and had a bleeding after tooth extraction. Array showed a 14,5 Mb deletion of 2q31.3q32.3 (de novo). Imaging (latest age 17 years) did not show any abnormalities. The third patient, aged 28 years, was diagnosed during pregnancy with an interstitial deletion of circa 6 Mb on chromosome 2q31.1q32.2 3, previously shown in the fetus with bilateral club feet and hydronephrosis. She had no vEDS facial features and the skin was relatively thin. She has thoracolumbar scoliosis and dural ectasia. Imaging did not reveal any vascular abnormalities. Her son, born at 37 weeks 3 days. had club feet but not other clinical signs suggestive of classical or vascular EDS. DISCUSSION: Three patients are described with a contiguous deletion of varying size encompassing the COL3A1 and COL5A2 gene. Due to the mild phenotype a diagnosis of EDS was not suspected and was found coincidental. Since two of the patients were pregnant without major complications these patients may require a less defensive, approach to pregnancy/delivery.


Asunto(s)
Pie Equinovaro , Síndrome de Ehlers-Danlos , Anomalías Cutáneas , Colágeno Tipo III/genética , Síndrome de Ehlers-Danlos/genética , Femenino , Humanos , Mutación , Fenotipo , Embarazo , Anomalías Cutáneas/genética
12.
Eur J Med Genet ; 65(9): 104557, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35779834

RESUMEN

Vascular Ehlers-Danlos syndrome (vEDS) is a rare genetic disorder clinically characterized by vascular, intestinal and uterine fragility and caused by heterozygous pathogenic variants in the COL3A1 gene. Management of patients with vEDS is difficult due to the unpredictability of the events and clear recommendations on the care of adults and children with vEDS are lacking. Therefore, we aimed to collect data on the current strategy of surveillance and monitoring of vEDS patients by expert centers in continental Europe and Great Britain, as a first step towards a consensus statement. A survey on the clinical management of vEDS was sent to all members of the Medium Sized Artery (MSA) Working Group of the European Reference Network for Rare Vascular Diseases (VASCERN) and other expert centers. All experts endorse the importance of monitoring patients with vEDS. Despite the absence of evidence based guidelines monitoring is considered in almost all countries, but screening intervals and modalities used for monitoring may differ among centers. There is a need for more prospective multicenter studies to define proper guidelines.


Asunto(s)
Síndrome de Ehlers-Danlos , Adulto , Niño , Colágeno Tipo III/genética , Síndrome de Ehlers-Danlos/diagnóstico , Síndrome de Ehlers-Danlos/genética , Síndrome de Ehlers-Danlos/patología , Europa (Continente)/epidemiología , Humanos , Estudios Prospectivos , Enfermedades Raras/genética
13.
J Clin Invest ; 132(13)2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35617047

RESUMEN

Mitochondrial DNA (mtDNA) depletion/deletions syndromes (MDDS) encompass a clinically and etiologically heterogenous group of mitochondrial disorders caused by impaired mtDNA maintenance. Among the most frequent causes of MDDS are defects in nucleoside/nucleotide metabolism, which is critical for synthesis and homeostasis of the deoxynucleoside triphosphate (dNTP) substrates of mtDNA replication. A central enzyme for generating dNTPs is ribonucleotide reductase, a critical mediator of de novo nucleotide synthesis composed of catalytic RRM1 subunits in complex with RRM2 or p53R2. Here, we report 5 probands from 4 families who presented with ptosis and ophthalmoplegia as well as other clinical manifestations and multiple mtDNA deletions in muscle. We identified 3 RRM1 loss-of-function variants, including a dominant catalytic site variant (NP_001024.1: p.N427K) and 2 homozygous recessive variants at p.R381, which has evolutionarily conserved interactions with the specificity site. Atomistic molecular dynamics simulations indicate mechanisms by which RRM1 variants affect protein structure. Cultured primary skin fibroblasts of probands manifested mtDNA depletion under cycling conditions, indicating impaired de novo nucleotide synthesis. Fibroblasts also exhibited aberrant nucleoside diphosphate and dNTP pools and mtDNA ribonucleotide incorporation. Our data reveal that primary RRM1 deficiency and, by extension, impaired de novo nucleotide synthesis are causes of MDDS.


Asunto(s)
Enfermedades Mitocondriales , Ribonucleótido Reductasas , Replicación del ADN , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Humanos , Enfermedades Mitocondriales/genética , Nucleósidos , Nucleótidos/genética , Ribonucleósido Difosfato Reductasa/genética , Ribonucleósido Difosfato Reductasa/metabolismo , Ribonucleótido Reductasas/genética , Ribonucleótido Reductasas/metabolismo
14.
Neurology ; 98(11): 440-445, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35110381

RESUMEN

ATP1A1 encodes the α1 subunit of the sodium-potassium ATPase, an electrogenic cation pump highly expressed in the nervous system. Pathogenic variants in other subunits of the same ATPase, encoded by ATP1A2 or ATP1A3, are associated with syndromes such as hemiplegic migraine, dystonia, or cerebellar ataxia. Worldwide, only 16 families have been reported carrying pathogenic ATP1A1 variants to date. Associated phenotypes are axonal neuropathies, spastic paraplegia, and hypomagnesemia with seizures and intellectual disability. By whole exome or genome sequencing, we identified 5 heterozygous ATP1A1 variants, c.674A>G;p.Gln225Arg, c.1003G>T;p.Gly335Cys, c.1526G>A;p.Gly509Asp, c.2152G>A;p.Gly718Ser, and c.2768T>A;p.Phe923Tyr, in 5 unrelated children with intellectual disability, spasticity, and peripheral, motor predominant neuropathy. Additional features were sensory loss, sleep disturbances, and seizures. All variants occurred de novo and are absent from control populations (MAF GnomAD = 0). Affecting conserved amino acid residues and constrained regions, all variants have high pathogenicity in silico prediction scores. In HEK cells transfected with ouabain-insensitive ATP1A1 constructs, cell viability was significantly decreased in mutants after 72h treatment with the ATPase inhibitor ouabain, demonstrating loss of ATPase function. Replicating the haploinsufficiency mechanism of disease with a gene-specific assay provides pathogenicity information and increases certainty in variant interpretation. This study further expands the genotype-phenotype spectrum of ATP1A1.


Asunto(s)
Discapacidad Intelectual , Migraña con Aura , Humanos , Discapacidad Intelectual/genética , Migraña con Aura/genética , Mutación/genética , Fenotipo , ATPasa Intercambiadora de Sodio-Potasio/genética , Síndrome
15.
Int J Mol Sci ; 23(3)2022 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-35163737

RESUMEN

Wiedemann-Steiner syndrome (WDSTS) is a Mendelian syndromic intellectual disability (ID) condition associated with hypertrichosis cubiti, short stature, and characteristic facies caused by pathogenic variants in the KMT2A gene. Clinical features can be inconclusive in mild and unusual WDSTS presentations with variable ID (mild to severe), facies (typical or not) and other associated malformations (bone, cerebral, renal, cardiac and ophthalmological anomalies). Interpretation and classification of rare KMT2A variants can be challenging. A genome-wide DNA methylation episignature for KMT2A-related syndrome could allow functional classification of variants and provide insights into the pathophysiology of WDSTS. Therefore, we assessed genome-wide DNA methylation profiles in a cohort of 60 patients with clinical diagnosis for WDSTS or Kabuki and identified a unique highly sensitive and specific DNA methylation episignature as a molecular biomarker of WDSTS. WDSTS episignature enabled classification of variants of uncertain significance in the KMT2A gene as well as confirmation of diagnosis in patients with clinical presentation of WDSTS without known genetic variants. The changes in the methylation profile resulting from KMT2A mutations involve global reduction in methylation in various genes, including homeobox gene promoters. These findings provide novel insights into the molecular etiology of WDSTS and explain the broad phenotypic spectrum of the disease.


Asunto(s)
Anomalías Múltiples , Discapacidad Intelectual , Anomalías Múltiples/diagnóstico , Anomalías Craneofaciales , ADN , Metilación de ADN , Facies , Trastornos del Crecimiento , Humanos , Hipertricosis , Discapacidad Intelectual/patología , Fenotipo , Síndrome
16.
J Med Genet ; 59(7): 697-705, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34321323

RESUMEN

BACKGROUND: O'Donnell-Luria-Rodan syndrome (ODLURO) is an autosomal-dominant neurodevelopmental disorder caused by pathogenic, mostly truncating variants in KMT2E. It was first described by O'Donnell-Luria et al in 2019 in a cohort of 38 patients. Clinical features encompass macrocephaly, mild intellectual disability (ID), autism spectrum disorder (ASD) susceptibility and seizure susceptibility. METHODS: Affected individuals were ascertained at paediatric and genetic centres in various countries by diagnostic chromosome microarray or exome/genome sequencing. Patients were collected into a case cohort and were systematically phenotyped where possible. RESULTS: We report 18 additional patients from 17 families with genetically confirmed ODLURO. We identified 15 different heterozygous likely pathogenic or pathogenic sequence variants (14 novel) and two partial microdeletions of KMT2E. We confirm and refine the phenotypic spectrum of the KMT2E-related neurodevelopmental disorder, especially concerning cognitive development, with rather mild ID and macrocephaly with subtle facial features in most patients. We observe a high prevalence of ASD in our cohort (41%), while seizures are present in only two patients. We extend the phenotypic spectrum by sleep disturbances. CONCLUSION: Our study, bringing the total of known patients with ODLURO to more than 60 within 2 years of the first publication, suggests an unexpectedly high relative frequency of this syndrome worldwide. It seems likely that ODLURO, although just recently described, is among the more common single-gene aetiologies of neurodevelopmental delay and ASD. We present the second systematic case series of patients with ODLURO, further refining the mutational and phenotypic spectrum of this not-so-rare syndrome.


Asunto(s)
Trastorno del Espectro Autista , Discapacidad Intelectual , Megalencefalia , Trastornos del Neurodesarrollo , Trastorno del Espectro Autista/genética , Niño , Humanos , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/epidemiología , Discapacidad Intelectual/genética , Convulsiones/epidemiología , Convulsiones/genética , Síndrome , Secuenciación del Exoma
17.
Eur J Hum Genet ; 30(3): 271-281, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34521999

RESUMEN

Zhu-Tokita-Takenouchi-Kim (ZTTK) syndrome, an intellectual disability syndrome first described in 2016, is caused by heterozygous loss-of-function variants in SON. Its encoded protein promotes pre-mRNA splicing of many genes essential for development. Whereas individual phenotypic traits have previously been linked to erroneous splicing of SON target genes, the phenotypic spectrum and the pathogenicity of missense variants have not been further evaluated. We present the phenotypic abnormalities in 52 individuals, including 17 individuals who have not been reported before. In total, loss-of-function variants were detected in 49 individuals (de novo in 47, inheritance unknown in 2), and in 3, a missense variant was observed (2 de novo, 1 inheritance unknown). Phenotypic abnormalities, systematically collected and analyzed in Human Phenotype Ontology, were found in all organ systems. Significant inter-individual phenotypic variability was observed, even in individuals with the same recurrent variant (n = 13). SON haploinsufficiency was previously shown to lead to downregulation of downstream genes, contributing to specific phenotypic features. Similar functional analysis for one missense variant, however, suggests a different mechanism than for heterozygous loss-of-function. Although small in numbers and while pathogenicity of these variants is not certain, these data allow for speculation whether de novo missense variants cause ZTTK syndrome via another mechanism, or a separate overlapping syndrome. In conclusion, heterozygous loss-of-function variants in SON define a recognizable syndrome, ZTTK, associated with a broad, severe phenotypic spectrum, characterized by a large inter-individual variability. These observations provide essential information for affected individuals, parents, and healthcare professionals to ensure appropriate clinical management.


Asunto(s)
Proteínas de Unión al ADN , Discapacidad Intelectual , Antígenos de Histocompatibilidad Menor , Proteínas de Unión al ADN/genética , Humanos , Discapacidad Intelectual/genética , Antígenos de Histocompatibilidad Menor/genética , Mutación Missense , Fenotipo , Síndrome
18.
Child Neurol Open ; 8: 2329048X211048068, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34761051

RESUMEN

Neurologic disorders caused by mutations in the ATP1A3 gene were originally reported as three distinct rare clinical syndromes: Alternating Hemiplegia of Childhood (AHC), Rapid-onset Dystonia Parkinsonism (RDP) and Cerebellar ataxia, Areflexia, Pes cavus, Opticus atrophy and Sensorineural hearing loss (CAPOS). In this case series, we describe 3 patients. A mother and her daughter showed an intermediate phenotype different from each other with the same heterozygous missense mutation (p.[R756C]), recently described in literature as Relapsing Encephalopathy With Cerebellar Ataxia (RECA). In addition, a third patient showed an intermediate AHC-RDP phenotype and had a likely pathogenic novel de novo missense mutation (p.[L100 V]). These patients support the growing evidence that AHC, RDP and RECA are part of a continuous ATP1A3 mutation spectrum that is still expanding. Three common features were a sudden onset, asymmetrical neurological symptoms, as well as the presence of triggering factors. When present, the authors argue to perform exome sequencing in an early stage.

19.
Hum Genet ; 140(7): 1109-1120, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33944996

RESUMEN

Located in the critical 1p36 microdeletion region, the chromodomain helicase DNA-binding protein 5 (CHD5) gene encodes a subunit of the nucleosome remodeling and deacetylation (NuRD) complex required for neuronal development. Pathogenic variants in six of nine chromodomain (CHD) genes cause autosomal dominant neurodevelopmental disorders, while CHD5-related disorders are still unknown. Thanks to GeneMatcher and international collaborations, we assembled a cohort of 16 unrelated individuals harboring heterozygous CHD5 variants, all identified by exome sequencing. Twelve patients had de novo CHD5 variants, including ten missense and two splice site variants. Three familial cases had nonsense or missense variants segregating with speech delay, learning disabilities, and/or craniosynostosis. One patient carried a frameshift variant of unknown inheritance due to unavailability of the father. The most common clinical features included language deficits (81%), behavioral symptoms (69%), intellectual disability (64%), epilepsy (62%), and motor delay (56%). Epilepsy types were variable, with West syndrome observed in three patients, generalized tonic-clonic seizures in two, and other subtypes observed in one individual each. Our findings suggest that, in line with other CHD-related disorders, heterozygous CHD5 variants are associated with a variable neurodevelopmental syndrome that includes intellectual disability with speech delay, epilepsy, and behavioral problems as main features.


Asunto(s)
ADN Helicasas/genética , Discapacidad Intelectual/genética , Mutación Missense , Proteínas del Tejido Nervioso/genética , Trastornos del Neurodesarrollo/genética , Adolescente , Dominio Catalítico , Niño , Preescolar , Estudios de Cohortes , Epilepsia/genética , Femenino , Genes Dominantes , Humanos , Discapacidad Intelectual/fisiopatología , Masculino , Trastornos del Neurodesarrollo/fisiopatología , Linaje , Adulto Joven
20.
Int J Mol Sci ; 23(1)2021 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-35008861

RESUMEN

Thoracic aortic aneurysm is a potentially life-threatening disease with a strong genetic contribution. Despite identification of multiple genes involved in aneurysm formation, little is known about the specific underlying mechanisms that drive the pathological changes in the aortic wall. The aim of our study was to unravel the molecular mechanisms underlying aneurysm formation in Marfan syndrome (MFS). We collected aortic wall samples from FBN1 variant-positive MFS patients (n = 6) and healthy donor hearts (n = 5). Messenger RNA (mRNA) expression levels were measured by RNA sequencing and compared between MFS patients and controls, and between haploinsufficient (HI) and dominant negative (DN) FBN1 variants. Immunohistochemical staining, proteomics and cellular respiration experiments were used to confirm our findings. FBN1 mRNA expression levels were highly variable in MFS patients and did not significantly differ from controls. Moreover, we did not identify a distinctive TGF-ß gene expression signature in MFS patients. On the contrary, differential gene and protein expression analysis, as well as vascular smooth muscle cell respiration measurements, pointed toward inflammation and mitochondrial dysfunction. Our findings confirm that inflammatory and mitochondrial pathways play important roles in the pathophysiological processes underlying MFS-related aortic disease, providing new therapeutic options.


Asunto(s)
Enfermedades de la Aorta/genética , Genómica , Síndrome de Marfan/genética , Adulto , Animales , Aorta/metabolismo , Aorta/patología , Enfermedades de la Aorta/patología , Respiración de la Célula , Femenino , Fibrilina-1/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , Masculino , Síndrome de Marfan/patología , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA