Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Lancet Microbe ; 5(2): e173-e180, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38244555

RESUMEN

BACKGROUND: Whole-genome sequencing (WGS) is the gold standard diagnostic tool to identify and genetically characterise emerging pathogen mutations (variants), but cost, capacity, and timeliness limit its use when large populations need rapidly assessing. We assessed the potential of genotyping assays to provide accurate and timely variant information at scale by retrospectively examining surveillance for SARS-CoV-2 variants in England between March and September, 2021, when genotyping assays were used widely for variant detection. METHODS: We chose a panel of four RT-PCR genotyping assays to detect circulating variants of SARS-COV-2 in England and developed a decision algorithm to assign a probable SARS-CoV-2 variant to samples using the assay results. We extracted surveillance data from the UK Health Security Agency databases for 115 934 SARS-CoV-2-positive samples (March 1-Sept 6, 2021) when variant information was available from both genotyping and WGS. By comparing the genotyping and WGS variant result, we calculated accuracy metrics (ie, sensitivity, specificity, and positive predictive value [PPV]) and the time difference between the sample collection date and the availability of variant information. We assessed the number of samples with a variant assigned from genotyping or WGS, or both, over time. FINDINGS: Genotyping and an initial decision algorithm (April 10-May 11, 2021 data) were accurate for key variant assignment: sensitivities and PPVs were 0·99 (95% CI 0·99-0·99) for the alpha, 1·00 (1·00-1·00) for the beta, and 0·91 (0·80-1·00) for the gamma variants; specificities were 0·97 (0·96-0·98), 1·00 (1·00-1·00), and 1·00 (1·00-1·00), respectively. A subsequent decision algorithm over a longer time period (May 27-Sept 6, 2021 data) remained accurate for key variant assignment: sensitivities were 0·91 (95% CI 0·74-1·00) for the beta, 0·98 (0·98-0·99) for the delta, and 0·93 (0·81-1·00) for the gamma variants; specificities were 1·00 (1·00-1·00), 0·96 (0·96-0·97), and 1·00 (1·00-1·00), respectively; and PPVs were 0·83 (0·62-1·00), 1·00 (1·00-1·00), and 0·78 (0·59-0·97), respectively. Genotyping produced variant information a median of 3 days (IQR 2-4) after the sample collection date, which was faster than with WGS (9 days [8-11]). The flexibility of genotyping enabled a nine-times increase in the quantity of samples tested for variants by this method (from 5000 to 45 000). INTERPRETATION: RT-PCR genotyping assays are suitable for high-throughput variant surveillance and could complement WGS, enabling larger scale testing for known variants and timelier results, with important implications for effective public health responses and disease control globally, especially in settings with low WGS capacity. However, the choice of panels of RT-PCR assays is highly dependent on database information on circulating variants generated by WGS, which could limit the use of genotyping assays when new variants are emerging and spreading rapidly. FUNDING: UK Health Security Agency and National Institute for Health Research Health Protection Research Unit in Emergency Preparedness and Response.


Asunto(s)
COVID-19 , Humanos , COVID-19/diagnóstico , COVID-19/epidemiología , Genotipo , Estudios Retrospectivos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , SARS-CoV-2/genética , Inglaterra/epidemiología , Prueba de COVID-19
2.
J Clin Virol ; 167: 105574, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37639778

RESUMEN

BACKGROUND: The challenges of rapid upscaling of testing capacity were a major lesson from the COVID-19 pandemic response. The need for process adjustments in high-throughput testing laboratories made sample pooling a challenging option to implement. OBJECTIVE: This study aimed to evaluate whether pooling samples at source (swab pooling) was as effective as qRT-PCR testing of individuals in identifying cases of SARS-CoV-2 in real-world community testing conditions using the same high-throughput pipeline. METHODS: Two cohorts of 10 (Pool10: 1,030 participants and 103 pools) and 6 (Pool6: 1,284 participants and 214 pools) samples per pool were tested for concordance, sensitivity, specificity, and Ct value differences with individual testing as reference. RESULTS: Swab pooling allowed unmodified application of an existing high-throughput SARS-Cov-2 testing pipeline with only marginal loss of accuracy. For Pool10, concordance was 98.1% (95% Confidence interval: 93.3-99.8%), sensitivity was 95.7% (85.5-99.5%), and specificity was 100.0% (93.6-100.0%). For Pool6, concordance was 97.2% (94.0-99.0%), sensitivity was 97.5% (93.7-99.3%), and specificity was 96.4% (87.7-99.6%). Differences of outcomes measure between pool size were not significant. Most positive individual samples, which were not detected in pools, had very low viral concentration. If only individual samples with a viral concentration > 400 copies/ml (i.e. Ct value < 30) were considered positive, the overall sensitivity of pooling increased to 99.5%. CONCLUSION: The study demonstrated high sensitivity and specificity by swab pooling and the immediate capability of high-throughput laboratories to implement this method making it an option in planning of rapid upscaling of laboratory capacity for future pandemics.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , Prueba de COVID-19 , Pandemias , Laboratorios
4.
Int J Technol Assess Health Care ; 38(1): e67, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-36317681

RESUMEN

It has been suggested that health economists need to improve their methods in order to meet the challenges of evaluating genomic/genetic tests. In this article, we set out twelve challenges identified from a rapid review of the literature and suggest solutions to the challenges identified. Two challenges were common to all economic evaluations: choice of perspective and time-horizon. Five challenges were relevant for all diagnostic technologies: complexity of analysis; range of costs; under-developed evidence base; behavioral aspects; and choice of outcome metrics. The final five challenges were pertinent for genomic tests and only these may require methodological development: heterogeneity of tests and platforms, increasing stratification, capturing personal utility; incidental findings; and spillover effects. Current methods of economic evaluation are generally able to cope with genomic/genetic tests, although a renewed focus on specific decision-makers' needs and a willingness to move away from cost-utility analysis may be required. Certain analysts may be constrained by reference cases developed primarily for the assessment of pharmaceuticals. The combined impact of multiple challenges may require analysts to be particularly careful in setting the scope of their analysis in order to ensure that feasibility is balanced with usefulness to the decision maker. A key issue is the under-developed evidence-base and it may be necessary to rethink translation processes to ensure sufficient, relevant evidence is available to support economic evaluation and adoption of genomic/genetic tests.


Asunto(s)
Genómica , Evaluación de la Tecnología Biomédica , Análisis Costo-Beneficio
5.
BMC Bioinformatics ; 23(1): 114, 2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35361119

RESUMEN

BACKGROUND: Transcriptionally informed predictions are increasingly important for sub-typing cancer patients, understanding underlying biology and to inform novel treatment strategies. For instance, colorectal cancers (CRCs) can be classified into four CRC consensus molecular subgroups (CMS) or five intrinsic (CRIS) sub-types that have prognostic and predictive value. Breast cancer (BRCA) has five PAM50 molecular subgroups with similar value, and the OncotypeDX test provides transcriptomic based clinically actionable treatment-risk stratification. However, assigning samples to these subtypes and other transcriptionally inferred predictions is time consuming and requires significant bioinformatics experience. There is no "universal" method of using data from diverse assay/sequencing platforms to provide subgroup classification using the established classifier sets of genes (CMS, CRIS, PAM50, OncotypeDX), nor one which in provides additional useful functional annotations such as cellular composition, single-sample Gene Set Enrichment Analysis, or prediction of transcription factor activity. RESULTS: To address this bottleneck, we developed classifieR, an easy-to-use R-Shiny based web application that supports flexible rapid single sample annotation of transcriptional profiles derived from cancer patient samples form diverse platforms. We demonstrate the utility of the " classifieR" framework to applications focused on the analysis of transcriptional profiles from colorectal (classifieRc) and breast (classifieRb). Samples are annotated with disease relevant transcriptional subgroups (CMS/CRIS sub-types in classifieRc and PAM50/inferred OncotypeDX in classifieRb), estimation of cellular composition using MCP-counter and xCell, single-sample Gene Set Enrichment Analysis (ssGSEA) and transcription factor activity predictions with Discriminant Regulon Expression Analysis (DoRothEA). CONCLUSIONS: classifieR provides a framework which enables labs without access to a dedicated bioinformation can get information on the molecular makeup of their samples, providing an insight into patient prognosis, druggability and also as a tool for analysis and discovery. Applications are hosted online at https://generatr.qub.ac.uk/app/classifieRc and https://generatr.qub.ac.uk/app/classifieRb after signing up for an account on https://generatr.qub.ac.uk .


Asunto(s)
Neoplasias de la Mama , Transcriptoma , Neoplasias de la Mama/genética , Biología Computacional/métodos , Femenino , Perfilación de la Expresión Génica/métodos , Humanos , Programas Informáticos
6.
Nat Med ; 27(8): 1370-1378, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34108716

RESUMEN

The effectiveness of COVID-19 vaccination in preventing new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections in the general community is still unclear. Here, we used the Office for National Statistics COVID-19 Infection Survey-a large community-based survey of individuals living in randomly selected private households across the United Kingdom-to assess the effectiveness of the BNT162b2 (Pfizer-BioNTech) and ChAdOx1 nCoV-19 (Oxford-AstraZeneca; ChAdOx1) vaccines against any new SARS-CoV-2 PCR-positive tests, split according to self-reported symptoms, cycle threshold value (<30 versus ≥30; as a surrogate for viral load) and gene positivity pattern (compatible with B.1.1.7 or not). Using 1,945,071 real-time PCR results from nose and throat swabs taken from 383,812 participants between 1 December 2020 and 8 May 2021, we found that vaccination with the ChAdOx1 or BNT162b2 vaccines already reduced SARS-CoV-2 infections ≥21 d after the first dose (61% (95% confidence interval (CI) = 54-68%) versus 66% (95% CI = 60-71%), respectively), with greater reductions observed after a second dose (79% (95% CI = 65-88%) versus 80% (95% CI = 73-85%), respectively). The largest reductions were observed for symptomatic infections and/or infections with a higher viral burden. Overall, COVID-19 vaccination reduced the number of new SARS-CoV-2 infections, with the largest benefit received after two vaccinations and against symptomatic and high viral burden infections, and with no evidence of a difference between the BNT162b2 and ChAdOx1 vaccines.


Asunto(s)
Vacunas contra la COVID-19/administración & dosificación , COVID-19/epidemiología , COVID-19/virología , Humanos , SARS-CoV-2/aislamiento & purificación , Reino Unido/epidemiología
7.
PLoS One ; 14(2): e0212031, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30794557

RESUMEN

We describe the use of a ligation-based targeted whole transcriptome expression profiling assay, TempO-Seq, to profile formalin-fixed paraffin-embedded (FFPE) tissue, including H&E stained FFPE tissue, by directly lysing tissue scraped from slides without extracting RNA or converting the RNA to cDNA. The correlation of measured gene expression changes in unfixed and fixed samples using blocks prepared from a pellet of a single cell type was R2 = 0.97, demonstrating that no significant artifacts were introduced by fixation. Fixed and fresh samples prepared in an equivalent manner produced comparable sequencing depth results (+/- 20%), with similar %CV (11.5 and 12.7%, respectively), indicating no significant loss of measurable RNA due to fixation. The sensitivity of the TempO-Seq assay was the same whether the tissue section was fixed or not. The assay performance was equivalent for human, mouse, or rat whole transcriptome. The results from 10 mm2 and 2 mm2 areas of tissue obtained from 5 µm thick sections were equivalent, thus demonstrating high sensitivity and ability to profile focal areas of histology within a section. Replicate reproducibility of separate areas of tissue ranged from R2 = 0.83 (lung) to 0.96 (liver) depending on the tissue type, with an average correlation of R2 = 0.90 across nine tissue types. The average %CVs were 16.8% for genes expressed at greater than 200 counts, and 20.3% for genes greater than 50 counts. Tissue specific differences in gene expression were identified and agreed with the literature. There was negligible impact on assay performance using FFPE tissues that had been archived for up to 30 years. Similarly, there was negligible impact of H&E staining, facilitating accurate visualization for scraping and assay of small focal areas of specific histology within a section.


Asunto(s)
Secuenciación del Exoma/métodos , Perfilación de la Expresión Génica/métodos , Animales , Línea Celular Tumoral , Formaldehído , Regulación de la Expresión Génica , Humanos , Células MCF-7 , Ratones , Adhesión en Parafina , Ratas , Reproducibilidad de los Resultados , Fijación del Tejido
8.
Arch Toxicol ; 92(8): 2517-2531, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30008028

RESUMEN

The utilisation of genome-wide transcriptomics has played a pivotal role in advancing the field of toxicology, allowing the mapping of transcriptional signatures to chemical exposures. These activities have uncovered several transcriptionally regulated pathways that can be utilised for assessing the perturbation impact of a chemical and also the identification of toxic mode of action. However, current transcriptomic platforms are not very amenable to high-throughput workflows due to, high cost, complexities in sample preparation and relatively complex bioinformatic analysis. Thus, transcriptomic investigations are usually limited in dose and time dimensions and are, therefore, not optimal for implementation in risk assessment workflows. In this study, we investigated a new cost-effective, transcriptomic assay, TempO-Seq, which alleviates the aforementioned limitations. This technique was evaluated in a 6-compound screen, utilising differentiated kidney (RPTEC/TERT1) and liver (HepaRG) cells and compared to non-transcriptomic label-free sensitive endpoints of chemical-induced disturbances, namely phase contrast morphology, xCELLigence and glycolysis. Non-proliferating cell monolayers were exposed to six sub-lethal concentrations of each compound for 24 h. The results show that utilising a 2839 gene panel, it is possible to discriminate basal tissue-specific signatures, generate dose-response relationships and to discriminate compound-specific and cell type-specific responses. This study also reiterates previous findings that chemical-induced transcriptomic alterations occur prior to cytotoxicity and that transcriptomics provides in depth mechanistic information of the effects of chemicals on cellular transcriptional responses. TempO-Seq is a robust transcriptomic platform that is well suited for in vitro toxicity experiments.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Riñón/citología , Hígado/citología , Pruebas de Toxicidad/métodos , Transcriptoma/efectos de los fármacos , Bromatos/toxicidad , Diferenciación Celular/efectos de los fármacos , Línea Celular , Ciclosporina/toxicidad , Relación Dosis-Respuesta a Droga , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Ocratoxinas/toxicidad , Ácido Valproico/toxicidad
9.
PLoS One ; 12(5): e0178302, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28542535

RESUMEN

The use of gene expression signatures to classify compounds, identify efficacy or toxicity, and differentiate close analogs relies on the sensitivity of the method to identify modulated genes. We used a novel ligation-based targeted whole transcriptome expression profiling assay, TempO-Seq®, to determine whether previously unreported compound-responsive genes could be identified and incorporated into a broad but specific compound signature. TempO-Seq exhibits 99.6% specificity, single cell sensitivity, and excellent correlation with fold differences measured by RNA-Seq (R2 = 0.9) for 20,629 targets. Unlike many expression assays, TempO-Seq does not require RNA purification, cDNA synthesis, or capture of targeted RNA, and lacks a 3' end bias. To investigate the sensitivity of the TempO-Seq assay to identify significantly modulated compound-responsive genes, we derived whole transcriptome profiles from MCF-7 cells treated with the histone deacetylase inhibitor Trichostatin A (TSA) and identified more than 9,000 differentially expressed genes. The TSA profile for MCF-7 cells overlapped those for HL-60 and PC-3 cells in the Connectivity Map (cMAP) database, suggesting a common TSA-specific expression profile independent of baseline gene expression. A 43-gene cell-independent TSA signature was extracted from cMAP and confirmed in TempO-Seq MCF-7 data. Additional genes that were not previously reported to be TSA responsive in the cMAP database were also identified. TSA treatment of 5 cell types revealed 1,136 differentially expressed genes in common, including 785 genes not previously reported to be TSA responsive. We conclude that TSA induces a specific expression signature that is consistent across widely different cell types, that this signature contains genes not previously associated with TSA responses, and that TempO-Seq provides the sensitive differential expression detection needed to define such compound-specific, cell-independent, changes in expression.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Ácidos Hidroxámicos/metabolismo , Humanos , Ácidos Hidroxámicos/análisis , Células MCF-7/química , Células MCF-7/metabolismo , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
10.
Dev Genes Evol ; 220(3-4): 77-87, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20563596

RESUMEN

The biological function of a cell-type-specific glycosylation of an adhesion molecule belonging to the L1CAM immunoglobulin superfamily was previously determined in the nervous system of the embryonic leech, Hirudo medicinalis. The Lan3-2 glycoepitope is a surface marker of sensory afferent neurons and is required for their appropriate developmental collateral branching and synaptogenesis in the CNS. The chemical structure of the Lan3-2 glycoepitope consists of beta-(1,4)-linked mannopyranose. Here, we show the conservation of the cell-type-specific expression of this mannose polymer in Caenorhabditis elegans. The Lan3-2 glycoepitope is expressed on the cell surface of a subset of dissociated embryonic neurons and, in the adult worm, by the pharyngeal motor neuron, M5, and the chemosensory afferents, the amphids. Additionally, the vulval epithelium expresses the Lan3-2 glycoepitope in late L4 larvae and in adult hermaphrodites. To investigate proteins carrying this restrictively expressed glycoepitope, worm extract was immunoaffinity purified with Lan3-2 monoclonal antibody and Western blotted. A polyclonal antibody reactive with the cytoplasmic tail of LAD-1/SAX-7, a C. elegans member of the L1CAM family, recognizes a 270 kDa protein band while Lan3-2 antibody also recognizes a 190 kDa glycoform, its putative Lan3-2 ectodomain. Thus, in C. elegans, as in leech, the Lan3-2 epitope is located on a L1CAM homologue. The cell-type-specific expression of the Lan3-2 glycoepitope shared by leech and C. elegans will be useful for understanding how cell-type-specific glycoepitopes mediate cell-cell interactions during development.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Epítopos/metabolismo , Glicoproteínas/metabolismo , Animales , Anticuerpos Monoclonales/inmunología , Western Blotting , Caenorhabditis elegans/embriología , Caenorhabditis elegans/crecimiento & desarrollo , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Células Epiteliales/metabolismo , Epítopos/química , Epítopos/genética , Evolución Molecular , Femenino , Regulación del Desarrollo de la Expresión Génica , Glicoproteínas/genética , Glicoproteínas/inmunología , Glicosilación , Manosa/química , Manosa/metabolismo , Microscopía Confocal , Mutación , Sistema Nervioso/embriología , Sistema Nervioso/crecimiento & desarrollo , Sistema Nervioso/metabolismo , Neuronas/metabolismo , Filogenia , Polisacáridos/química , Polisacáridos/metabolismo
11.
Nat Struct Mol Biol ; 17(3): 339-47, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20190755

RESUMEN

Vertebrate genomes encode 19 classical cadherins and about 100 nonclassical cadherins. Adhesion by classical cadherins depends on binding interactions in their N-terminal EC1 domains, which swap N-terminal beta-strands between partner molecules from apposing cells. However, strand-swapping sequence signatures are absent from nonclassical cadherins, raising the question of how these proteins function in adhesion. Here, we show that T-cadherin, a glycosylphosphatidylinositol (GPI)-anchored cadherin, forms dimers through an alternative nonswapped interface near the EC1-EC2 calcium-binding sites. Mutations within this interface ablate the adhesive capacity of T-cadherin. These nonadhesive T-cadherin mutants also lose the ability to regulate neurite outgrowth from T-cadherin-expressing neurons. Our findings reveal the likely molecular architecture of the T-cadherin homophilic interface and its requirement for axon outgrowth regulation. The adhesive binding mode used by T-cadherin may also be used by other nonclassical cadherins.


Asunto(s)
Cadherinas/química , Cadherinas/metabolismo , Animales , Calcio/metabolismo , Células Cultivadas , Pollos , Cristalografía por Rayos X , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Mutación , Neuronas/metabolismo , Neuronas/fisiología , Unión Proteica/genética , Unión Proteica/fisiología , Multimerización de Proteína/genética , Multimerización de Proteína/fisiología , Estructura Secundaria de Proteína , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...