RESUMEN
The acute retroviral syndrome may present with diverse systemic manifestations and laboratory abnormalities. Here we present a rare case of primary human immunodeficiency virus (HIV) infection causing severe acute hepatitis. Liver histopathology demonstrated a pattern of lymphocytic inflammation consistent with acute hepatitis, high levels of HIV proviral DNA were detected within liver tissue, and immunofluorescence showed HIV p24 antigen within immune and parenchymal cells including hepatocytes. We review the literature pertaining to HIV infection of cell compartments within the liver and discuss the implications for HIV-associated acute liver disease.
RESUMEN
Type I interferons (IFN-I) are critical mediators of innate control of viral infections but also drive the recruitment of inflammatory cells to sites of infection, a key feature of severe coronavirus disease 2019. Here, IFN-I signaling was modulated in rhesus macaques (RMs) before and during acute SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) infection using a mutated IFN-α2 (IFN-modulator; IFNmod), which has previously been shown to reduce the binding and signaling of endogenous IFN-I. IFNmod treatment in uninfected RMs was observed to induce a modest up-regulation of only antiviral IFN-stimulated genes (ISGs); however, in SARS-CoV-2-infected RMs, IFNmod reduced both antiviral and inflammatory ISGs. IFNmod treatment resulted in a potent reduction in SARS-CoV-2 viral loads both in vitro in Calu-3 cells and in vivo in bronchoalveolar lavage (BAL), upper airways, lung, and hilar lymph nodes of RMs. Furthermore, in SARS-CoV-2-infected RMs, IFNmod treatment potently reduced inflammatory cytokines, chemokines, and CD163+ MRC1- inflammatory macrophages in BAL and expression of Siglec-1 on circulating monocytes. In the lung, IFNmod also reduced pathogenesis and attenuated pathways of inflammasome activation and stress response during acute SARS-CoV-2 infection. Using an intervention targeting both IFN-α and IFN-ß pathways, this study shows that, whereas early IFN-I restrains SARS-CoV-2 replication, uncontrolled IFN-I signaling critically contributes to SARS-CoV-2 inflammation and pathogenesis in the moderate disease model of RMs.
Asunto(s)
COVID-19 , Interferón Tipo I , Animales , Interferón Tipo I/farmacología , SARS-CoV-2 , Macaca mulatta , Replicación Viral , Antivirales/farmacología , Antivirales/uso terapéutico , Inflamación/tratamiento farmacológicoRESUMEN
The immunopathological mechanisms driving the development of severe COVID-19 remain poorly defined. Here, we utilize a rhesus macaque model of acute SARS-CoV-2 infection to delineate perturbations in the innate immune system. SARS-CoV-2 initiates a rapid infiltration of plasmacytoid dendritic cells into the lower airway, commensurate with IFNA production, natural killer cell activation, and a significant increase of blood CD14-CD16+ monocytes. To dissect the contribution of lung myeloid subsets to airway inflammation, we generate a longitudinal scRNA-Seq dataset of airway cells, and map these subsets to corresponding populations in the human lung. SARS-CoV-2 infection elicits a rapid recruitment of two macrophage subsets: CD163+MRC1-, and TREM2+ populations that are the predominant source of inflammatory cytokines. Treatment with baricitinib (Olumiant®), a JAK1/2 inhibitor is effective in eliminating the influx of non-alveolar macrophages, with a reduction of inflammatory cytokines. This study delineates the major lung macrophage subsets driving airway inflammation during SARS-CoV-2 infection.
Asunto(s)
COVID-19 , Animales , Humanos , Macaca mulatta , SARS-CoV-2 , Macrófagos , Inflamación , Citocinas , Glicoproteínas de Membrana , Receptores InmunológicosRESUMEN
Persistence of the human immunodeficiency virus type-1 (HIV-1) latent reservoir in infected individuals remains a problem despite fully suppressive antiretroviral therapy (ART). While reservoir formation begins during acute infection, the mechanisms responsible for its establishment remain unclear. CD8+ T cells are important during the initial control of viral replication. Here we examined the effect of CD8+ T cells on formation of the latent reservoir in simian immunodeficiency virus (SIV)-infected macaques by performing experimental CD8+ depletion either before infection or before early (that is, day 14 post-infection) ART initiation. We found that CD8+ depletion resulted in slower decline of viremia, indicating that CD8+ lymphocytes reduce the average lifespan of productively infected cells during acute infection and early ART, presumably through SIV-specific cytotoxic T lymphocyte (CTL) activity. However, CD8+ depletion did not change the frequency of infected CD4+ T cells in the blood or lymph node as measured by the total cell-associated viral DNA or intact provirus DNA assay. In addition, the size of the persistent reservoir remained the same when measuring the kinetics of virus rebound after ART interruption. These data indicate that during early SIV infection, the viral reservoir that persists under ART is established largely independent of CTL control.
Asunto(s)
Infecciones por VIH , Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios , Animales , Humanos , Virus de la Inmunodeficiencia de los Simios/genética , Síndrome de Inmunodeficiencia Adquirida del Simio/tratamiento farmacológico , Linfocitos T CD8-positivos , Antirretrovirales/uso terapéutico , Macaca mulatta , Infecciones por VIH/tratamiento farmacológicoRESUMEN
Adeno-associated virus (AAV)-based gene therapies are emerging strategies in Duchenne muscular dystrophy (DMD) treatment. Exposure to wild-type AAV can lead to development of neutralizing antibodies (NAbs) and blocking of AAV transduction, thereby limiting the delivery of AAV vector-based gene therapy. Therefore, it is imperative to check for the presence of AAV NAbs in a patient who is a candidate for gene therapy. We prospectively enrolled 101 genetically confirmed males with DMD (median age 11 years, 48% ambulatory and 59% on steroids) and performed AAV neutralization assays against AAV2, AAV8, AAV9, and AAVrh74 serotypes. The serotype analysis showed that AAV9 (36%) and AAVrh74 (32%) seroprevalence was lower compared with AAV2 (56%) and AAV8 (47%). Interestingly, age was not correlated with NAb titer for any of the capsids. NAb responses were observed at a higher frequency in African American participants and at a lower frequency in Caucasian participants for all four serotypes. Further analysis showed no significant differences in NAb titers regardless of serotype and whether participants were taking steroids or not. Finally, we observed higher AAV8, AAV9, and AAVrh74 seroprevalence and significantly higher AAV2 and AAV8 NAb titers in participants who were ambulatory compared with nonambulatory participants. Overall, these data identify AAV9 and AAVrh74 as the two serotypes with lower pre-existing NAb titers in this study's cohort of 101 males with DMD, possibly showing their utility in future gene therapy applications in treatment of this cohort of patients with DMD.
Asunto(s)
Anticuerpos Neutralizantes , Distrofia Muscular de Duchenne , Masculino , Humanos , Niño , Anticuerpos Antivirales , Dependovirus/genética , Estudios Seroepidemiológicos , Vectores GenéticosRESUMEN
Type-I interferons (IFN-I) are critical mediators of innate control of viral infections, but also drive recruitment of inflammatory cells to sites of infection, a key feature of severe COVID-19. Here, and for the first time, IFN-I signaling was modulated in rhesus macaques (RMs) prior to and during acute SARS-CoV-2 infection using a mutated IFNα2 (IFN-modulator; IFNmod), which has previously been shown to reduce the binding and signaling of endogenous IFN-I. In SARS-CoV-2-infected RMs, IFNmod reduced both antiviral and inflammatory ISGs. Notably, IFNmod treatment resulted in a potent reduction in (i) SARS-CoV-2 viral load in Bronchoalveolar lavage (BAL), upper airways, lung, and hilar lymph nodes; (ii) inflammatory cytokines, chemokines, and CD163+MRC1-inflammatory macrophages in BAL; and (iii) expression of Siglec-1, which enhances SARS-CoV-2 infection and predicts disease severity, on circulating monocytes. In the lung, IFNmod also reduced pathogenesis and attenuated pathways of inflammasome activation and stress response during acute SARS-CoV-2 infection. This study, using an intervention targeting both IFN-α and IFN-ß pathways, shows that excessive inflammation driven by type 1 IFN critically contributes to SARS-CoV-2 pathogenesis in RMs, and demonstrates the potential of IFNmod to limit viral replication, SARS-CoV-2 induced inflammation, and COVID-19 severity.
RESUMEN
Antibody-based testing for emtricitabine (FTC), a critical component of pre-exposure prophylaxis and antiretroviral therapy, would provide low-cost detection for clinical monitoring to improve adherence. We developed a mAb (5D2) to FTC and demonstrated its high specificity and physiologically relevant linear range of detection in a competitive enzyme immunoassay. Thus, this mAb is a key reagent that will enable simple and low-cost lateral flow assays and enzyme immunoassays for adherence monitoring.
Asunto(s)
Fármacos Anti-VIH , Infecciones por VIH , Profilaxis Pre-Exposición , Fármacos Anti-VIH/uso terapéutico , Antirretrovirales/uso terapéutico , Emtricitabina/uso terapéutico , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/prevención & control , Humanos , Tenofovir/uso terapéuticoRESUMEN
The COVID-19 pandemic remains a global health crisis, yet, the immunopathological mechanisms driving the development of severe disease remain poorly defined. Here, we utilize a rhesus macaque (RM) model of SARS-CoV-2 infection to delineate perturbations in the innate immune system during acute infection using an integrated systems analysis. We found that SARS-CoV-2 initiated a rapid infiltration (two days post infection) of plasmacytoid dendritic cells into the lower airway, commensurate with IFNA production, natural killer cell activation, and induction of interferon-stimulated genes. At this early interval, we also observed a significant increase of blood CD14-CD16+ monocytes. To dissect the contribution of lung myeloid subsets to airway inflammation, we generated a novel compendium of RM-specific lung macrophage gene expression using a combination of sc-RNA-Seq data and bulk RNA-Seq of purified populations under steady state conditions. Using these tools, we generated a longitudinal sc-RNA-seq dataset of airway cells in SARS-CoV-2-infected RMs. We identified that SARS-CoV-2 infection elicited a rapid recruitment of two subsets of macrophages into the airway: a C206+MRC1-population resembling murine interstitial macrophages, and a TREM2+ population consistent with CCR2+ infiltrating monocytes, into the alveolar space. These subsets were the predominant source of inflammatory cytokines, accounting for ~75% of IL6 and TNF production, and >90% of IL10 production, whereas the contribution of CD206+MRC+ alveolar macrophages was significantly lower. Treatment of SARS-CoV-2 infected RMs with baricitinib (Olumiant ® ), a novel JAK1/2 inhibitor that recently received Emergency Use Authorization for the treatment of hospitalized COVID-19 patients, was remarkably effective in eliminating the influx of infiltrating, non-alveolar macrophages in the alveolar space, with a concomitant reduction of inflammatory cytokines. This study has delineated the major subsets of lung macrophages driving inflammatory and anti-inflammatory cytokine production within the alveolar space during SARS-CoV-2 infection. ONE SENTENCE SUMMARY: Multi-omic analyses of hyperacute SARS-CoV-2 infection in rhesus macaques identified two population of infiltrating macrophages, as the primary orchestrators of inflammation in the lower airway that can be successfully treated with baricitinib.
RESUMEN
Understanding viral rebound in pediatric HIV-1 infection may inform the development of alternatives to lifelong antiretroviral therapy (ART) to achieve viral remission. We thus investigated viral rebound after analytical treatment interruption (ATI) in 10 infant macaques orally infected with SHIV.C.CH505 and treated with long-term ART. Rebound viremia was detected within 7 to 35 days of ATI in 9 of 10 animals, with posttreatment control of viremia seen in 5 of 5 Mamu-A*01+ macaques. Single-genome sequencing revealed that initial rebound virus was similar to viral DNA present in CD4+ T cells from blood, rectum, and lymph nodes before ATI. We assessed the earliest sites of viral reactivation immediately following ATI using ImmunoPET imaging. The largest increase in signal that preceded detectable viral RNA in plasma was found in the gastrointestinal (GI) tract, a site with relatively high SHIV RNA/DNA ratios in CD4+ T cells before ATI. Thus, the GI tract may be an initial source of rebound virus, but as ATI progresses, viral reactivation in other tissues likely contributes to the composition of plasma virus. Our study provides potentially novel insight into the features of viral rebound in pediatric infection and highlights the application of a noninvasive technique to monitor areas of HIV-1 expression in children.
Asunto(s)
Antirretrovirales/uso terapéutico , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Viremia/etiología , Animales , Femenino , Macaca , Masculino , Viremia/patologíaRESUMEN
During antiretroviral therapy (ART), most of the human immunodeficiency virus (HIV) reservoirs persist in the B cell follicles (BCFs) of lymphoid tissue. Thus, for HIV cure strategies, it is critical to generate cytolytic CD8+ T cells that home to BCF, reduce the reservoir burden, and maintain strong antiviral responses in the absence of ART. Here, using a chronic simian immunodeficiency virus (SIV)/rhesus macaque model, we showed that therapeutic vaccination under ART using a CD40L plus TLR7 agonistadjuvanted DNA/modified vaccinia Ankara vaccine regimen induced robust and highly functional, SIV-specific CD4+ and CD8+ T cell responses. In addition, the vaccination induced SIV-specific CD8+ T cells in the lymph nodes (LNs) that could home to BCF. Administration of PD-1 blockade before initiation of ART and during vaccination markedly increased the frequency of granzyme B+ perforin+ CD8+ T cells in the blood and LN, enhanced their localization in germinal centers of BCF, and reduced the viral reservoir. After ART interruption, the vaccine + antiPD-1 antibodytreated animals, compared with the vaccine alone and ART alone control animals, displayed preservation of the granzyme B+ CD8+ T cells in the T cell zone and BCF of LN, maintained high SIV antigen-recognition breadth, showed control of reemerging viremia, and improved survival. Our findings revealed that PD-1 blockade enhanced the therapeutic benefits of SIV vaccination by improving and sustaining the function and localization of vaccine-induced CD8+ T cells to BCF and decreasing viral reservoirs in lymphoid tissue. This work has potential implications for the development of curative HIV strategies.
Asunto(s)
Linfocitos T CD8-positivos/inmunología , Tejido Linfoide/inmunología , Receptor de Muerte Celular Programada 1/inmunología , Virus de la Inmunodeficiencia de los Simios/inmunología , Vacunas Virales/inmunología , Humanos , VacunaciónRESUMEN
Ongoing SARS-CoV-2 vaccine development is focused on identifying stable, cost-effective, and accessible candidates for global use, specifically in low and middle-income countries. Here, we report the efficacy of a rapidly scalable, novel yeast expressed SARS-CoV-2 specific receptor-binding domain (RBD) based vaccine in rhesus macaques. We formulated the RBD immunogen in alum, a licensed and an emerging alum adsorbed TLR-7/8 targeted, 3M-052-alum adjuvants. The RBD+3M-052-alum adjuvanted vaccine promoted better RBD binding and effector antibodies, higher CoV-2 neutralizing antibodies, improved Th1 biased CD4+T cell reactions, and increased CD8+ T cell responses when compared to the alum-alone adjuvanted vaccine. RBD+3M-052-alum induced a significant reduction of SARS-CoV-2 virus in respiratory tract upon challenge, accompanied by reduced lung inflammation when compared with unvaccinated controls. Anti-RBD antibody responses in vaccinated animals inversely correlated with viral load in nasal secretions and BAL. RBD+3M-052-alum blocked a post SARS-CoV-2 challenge increase in CD14+CD16++ intermediate blood monocytes, and Fractalkine, MCP-1, and TRAIL in the plasma. Decreased plasma analytes and intermediate monocyte frequencies correlated with reduced nasal and BAL viral loads. Lastly, RBD-specific plasma cells accumulated in the draining lymph nodes and not in the bone marrow, contrary to previous findings. Together, these data show that a yeast expressed, RBD-based vaccine+3M-052-alum provides robust immune responses and protection against SARS-CoV-2, making it a strong and scalable vaccine candidate.
Asunto(s)
Adyuvantes Inmunológicos/administración & dosificación , Compuestos de Alumbre/administración & dosificación , Vacunas contra la COVID-19 , COVID-19/prevención & control , SARS-CoV-2 , Saccharomycetales/genética , Glicoproteína de la Espiga del Coronavirus/genética , Administración por Inhalación , Administración Intranasal , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , COVID-19/inmunología , COVID-19/patología , COVID-19/virología , Línea Celular , Citocinas/inmunología , Humanos , Inmunoglobulina G/inmunología , Pulmón/patología , Macaca mulatta , Masculino , Unión Proteica , Dominios Proteicos , Glicoproteína de la Espiga del Coronavirus/inmunología , Carga ViralRESUMEN
There is a great need for the development of vaccines that induce potent and long-lasting protective immunity against SARS-CoV-2. Multimeric display of the antigen combined with potent adjuvant can enhance the potency and longevity of the antibody response. The receptor binding domain (RBD) of the spike protein is a primary target of neutralizing antibodies. Here, we developed a trimeric form of the RBD and show that it induces a potent neutralizing antibody response against live virus with diverse effector functions and provides protection against SARS-CoV-2 challenge in mice and rhesus macaques. The trimeric form induces higher neutralizing antibody titer compared to monomer with as low as 1µg antigen dose. In mice, adjuvanting the protein with a TLR7/8 agonist formulation alum-3M-052 induces 100-fold higher neutralizing antibody titer and superior protection from infection compared to alum. SARS-CoV-2 infection causes significant loss of innate cells and pathology in the lung, and vaccination protects from changes in innate cells and lung pathology. These results demonstrate RBD trimer protein as a suitable candidate for vaccine against SARS-CoV-2.
Asunto(s)
Adyuvantes Inmunológicos/administración & dosificación , Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , COVID-19/prevención & control , Compuestos Heterocíclicos con 3 Anillos/administración & dosificación , Ácidos Esteáricos/administración & dosificación , Compuestos de Alumbre/administración & dosificación , Enzima Convertidora de Angiotensina 2/inmunología , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Formación de Anticuerpos/inmunología , Vacunas contra la COVID-19/administración & dosificación , Modelos Animales de Enfermedad , Compuestos Heterocíclicos con 3 Anillos/inmunología , Humanos , Macaca mulatta , Ratones , Unión Proteica , SARS-CoV-2/aislamiento & purificación , Glicoproteína de la Espiga del Coronavirus/inmunología , Ácidos Esteáricos/inmunologíaRESUMEN
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has initiated a global pandemic, and several vaccines have now received emergency use authorization. Using the reference strain SARS-CoV-2 USA-WA1/2020, we evaluated modes of transmission and the ability of prior infection or vaccine-induced immunity to protect against infection in ferrets. Ferrets were semipermissive to infection with the USA-WA1/2020 isolate. When transmission was assessed via the detection of viral RNA (vRNA) at multiple time points, direct contact transmission was efficient to 3/3 and 3/4 contact animals in 2 respective studies, while respiratory droplet transmission was poor to only 1/4 contact animals. To determine if previously infected ferrets were protected against reinfection, ferrets were rechallenged 28 or 56 days postinfection. Following viral challenge, no infectious virus was recovered in nasal wash samples. In addition, levels of vRNA in the nasal wash were several orders of magnitude lower than during primary infection, and vRNA was rapidly cleared. To determine if intramuscular vaccination protected ferrets, ferrets were vaccinated using a prime-boost strategy with the S protein receptor-binding domain formulated with an oil-in-water adjuvant. Upon viral challenge, none of the mock or vaccinated animals were protected against infection, and there were no significant differences in vRNA or infectious virus titers in the nasal wash. Combined, these studies demonstrate direct contact is the predominant mode of transmission of the USA-WA1/2020 isolate in ferrets and that immunity to SARS-CoV-2 is maintained for at least 56 days. Our studies also indicate protection of the upper respiratory tract against SARS-CoV-2 will require vaccine strategies that mimic natural infection or induce site-specific immunity. IMPORTANCE The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) USA-WA1/2020 strain is a CDC reference strain used by multiple research laboratories. Here, we show that the predominant mode of transmission of this isolate in ferrets is by direct contact. We further demonstrate ferrets are protected against reinfection for at least 56 days even when levels of neutralizing antibodies are low or undetectable. Last, we show that when ferrets were vaccinated by the intramuscular route to induce antibodies against SARS-CoV-2, ferrets remain susceptible to infection of the upper respiratory tract. Collectively, these studies suggest that protection of the upper respiratory tract will require vaccine approaches that mimic natural infection.
Asunto(s)
COVID-19/transmisión , Modelos Animales de Enfermedad , Reinfección/prevención & control , SARS-CoV-2/fisiología , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , COVID-19/inmunología , COVID-19/prevención & control , Vacunas contra la COVID-19/administración & dosificación , Hurones , Inyecciones Intramusculares , Nariz/virología , Reinfección/inmunología , SARS-CoV-2/inmunología , SARS-CoV-2/aislamiento & purificación , Glicoproteína de la Espiga del Coronavirus/administración & dosificación , Carga ViralRESUMEN
Inducing latency reversal to reveal infected cells to the host immune system represents a potential strategy to cure HIV infection. In separate studies, we have previously shown that CD8+ T cells may contribute to the maintenance of viral latency and identified a novel SMAC mimetic/IAP inhibitor (AZD5582) capable of reversing HIV/SIV latency in vivo by activating the non-canonical (nc) NF-κB pathway. Here, we use AZD5582 in combination with antibody-mediated depletion of CD8α+ cells to further evaluate the role of CD8+ T cells in viral latency maintenance. Six rhesus macaques (RM) were infected with SIVmac239 and treated with ART starting at week 8 post-infection. After 84-85 weeks of ART, all animals received a single dose of the anti-CD8α depleting antibody (Ab), MT807R1 (50mg/kg, s.c.), followed by 5 weekly doses of AZD5582 (0.1 mg/kg, i.v.). Following CD8α depletion + AZD5582 combined treatment, 100% of RMs experienced on-ART viremia above 60 copies per ml of plasma. In comparator groups of ART-suppressed SIV-infected RMs treated with AZD5582 only or CD8α depletion only, on-ART viremia was experienced by 56% and 57% of the animals respectively. Furthermore, the frequency of increased viremic episodes during the treatment period was greater in the CD8α depletion + AZD5582 group as compared to other groups. Mathematical modeling of virus reactivation suggested that, in addition to viral dynamics during acute infection, CD8α depletion influenced the response to AZD5582. This work suggests that the latency reversal induced by activation of the ncNF-κB signaling pathway with AZD5582 can be enhanced by CD8α+ cell depletion.
RESUMEN
A combination of vaccination approaches will likely be necessary to fully control the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. Here, we show that modified vaccinia Ankara (MVA) vectors expressing membrane-anchored pre-fusion stabilized spike (MVA/S) but not secreted S1 induced strong neutralizing antibody responses against SARS-CoV-2 in mice. In macaques, the MVA/S vaccination induced strong neutralizing antibodies and CD8+ T cell responses, and conferred protection from SARS-CoV-2 infection and virus replication in the lungs as early as day 2 following intranasal and intratracheal challenge. Single-cell RNA sequencing analysis of lung cells on day 4 after infection revealed that MVA/S vaccination also protected macaques from infection-induced inflammation and B cell abnormalities and lowered induction of interferon-stimulated genes. These results demonstrate that MVA/S vaccination induces neutralizing antibodies and CD8+ T cells in the blood and lungs and is a potential vaccine candidate for SARS-CoV-2.
Asunto(s)
Vacunas contra la COVID-19/inmunología , COVID-19/prevención & control , Vectores Genéticos/genética , SARS-CoV-2/inmunología , Vacunas de ADN/inmunología , Virus Vaccinia/genética , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Antígenos Virales/genética , Antígenos Virales/inmunología , COVID-19/inmunología , COVID-19/patología , COVID-19/virología , Vacunas contra la COVID-19/genética , Modelos Animales de Enfermedad , Expresión Génica , Orden Génico , Inmunofenotipificación , Pulmón/inmunología , Pulmón/patología , Pulmón/virología , Macaca , Macrófagos Alveolares/inmunología , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/patología , Ratones , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Vacunación/métodos , Vacunas de ADN/genéticaRESUMEN
SARS-CoV-2-induced hypercytokinemia and inflammation are critically associated with COVID-19 severity. Baricitinib, a clinically approved JAK1/JAK2 inhibitor, is currently being investigated in COVID-19 clinical trials. Here, we investigated the immunologic and virologic efficacy of baricitinib in a rhesus macaque model of SARS-CoV-2 infection. Viral shedding measured from nasal and throat swabs, bronchoalveolar lavages, and tissues was not reduced with baricitinib. Type I interferon (IFN) antiviral responses and SARS-CoV-2-specific T cell responses remained similar between the two groups. Animals treated with baricitinib showed reduced inflammation, decreased lung infiltration of inflammatory cells, reduced NETosis activity, and more limited lung pathology. Importantly, baricitinib-treated animals had a rapid and remarkably potent suppression of lung macrophage production of cytokines and chemokines responsible for inflammation and neutrophil recruitment. These data support a beneficial role for, and elucidate the immunological mechanisms underlying, the use of baricitinib as a frontline treatment for inflammation induced by SARS-CoV-2 infection.
Asunto(s)
Antiinflamatorios/administración & dosificación , Azetidinas/administración & dosificación , Tratamiento Farmacológico de COVID-19 , COVID-19/inmunología , Macaca mulatta , Infiltración Neutrófila/efectos de los fármacos , Purinas/administración & dosificación , Pirazoles/administración & dosificación , Sulfonamidas/administración & dosificación , Animales , COVID-19/fisiopatología , Muerte Celular/efectos de los fármacos , Degranulación de la Célula/efectos de los fármacos , Modelos Animales de Enfermedad , Inflamación/tratamiento farmacológico , Inflamación/genética , Inflamación/inmunología , Quinasas Janus/antagonistas & inhibidores , Pulmón/efectos de los fármacos , Pulmón/inmunología , Pulmón/patología , Activación de Linfocitos/efectos de los fármacos , Macrófagos Alveolares/inmunología , SARS-CoV-2/fisiología , Índice de Severidad de la Enfermedad , Linfocitos T/inmunología , Replicación Viral/efectos de los fármacosRESUMEN
Effective therapeutics aimed at mitigating COVID-19 symptoms are urgently needed. SARS-CoV-2 induced hypercytokinemia and systemic inflammation are associated with disease severity. Baricitinib, a clinically approved JAK1/2 inhibitor with potent anti-inflammatory properties is currently being investigated in COVID-19 human clinical trials. Recent reports suggest that baricitinib may also have antiviral activity in limiting viral endocytosis. Here, we investigated the immunologic and virologic efficacy of baricitinib in a rhesus macaque model of SARS-CoV-2 infection. Viral shedding measured from nasal and throat swabs, bronchoalveolar lavages and tissues was not reduced with baricitinib. Type I IFN antiviral responses and SARS-CoV-2 specific T cell responses remained similar between the two groups. Importantly, however, animals treated with baricitinib showed reduced immune activation, decreased infiltration of neutrophils into the lung, reduced NETosis activity, and more limited lung pathology. Moreover, baricitinib treated animals had a rapid and remarkably potent suppression of alveolar macrophage derived production of cytokines and chemokines responsible for inflammation and neutrophil recruitment. These data support a beneficial role for, and elucidate the immunological mechanisms underlying, the use of baricitinib as a frontline treatment for severe inflammation induced by SARS-CoV-2 infection.
RESUMEN
The "shock-and-kill" human immunodeficiency virus type 1 (HIV-1) cure strategy involves latency reversal followed by immune-mediated clearance of infected cells. We have previously shown that activation of the noncanonical NF-κB pathway using an inhibitor of apoptosis (IAP), AZD5582, reverses HIV/simian immunodeficiency virus (SIV) latency. Here, we combined AZD5582 with bispecific HIVxCD3 DART molecules to determine the impact of this approach on persistence. Rhesus macaques (RMs) (n = 13) were infected with simian/human immunodeficiency virus SHIV.C.CH505.375H.dCT, and triple antiretroviral therapy (ART) was initiated after 16 weeks. After 42 weeks of ART, 8 RMs received a cocktail of 3 HIVxCD3 DART molecules having human A32, 7B2, or PGT145 anti-HIV-1 envelope (Env) specificities paired with a human anti-CD3 specificity that is rhesus cross-reactive. The remaining 5 ART-suppressed RMs served as controls. For 10 weeks, a DART molecule cocktail was administered weekly (each molecule at 1 mg/kg of body weight), followed 2 days later by AZD5582 (0.1 mg/kg). DART molecule serum concentrations were well above those considered adequate for redirected killing activity against Env-expressing target cells but began to decline after 3 to 6 weekly doses, coincident with the development of antidrug antibodies (ADAs) against each of the DART molecules. The combination of AZD5582 and the DART molecule cocktail did not increase on-ART viremia or cell-associated SHIV RNA in CD4+ T cells and did not reduce the viral reservoir size in animals on ART. The lack of latency reversal in the model used in this study may be related to low pre-ART viral loads (median, <105 copies/ml) and low preintervention reservoir sizes (median, <102 SHIV DNA copies/million blood CD4+ T cells). Future studies to assess the efficacy of Env-targeting DART molecules or other clearance agents to reduce viral reservoirs after latency reversal may be more suited to models that better minimize immunogenicity and have a greater viral burden.IMPORTANCE The most significant barrier to an HIV-1 cure is the existence of the latently infected viral reservoir that gives rise to rebound viremia upon cessation of ART. Here, we tested a novel combination approach of latency reversal with AZD5582 and clearance with bispecific HIVxCD3 DART molecules in SHIV.C.CH505-infected, ART-suppressed rhesus macaques. We demonstrate that the DART molecules were not capable of clearing infected cells in vivo, attributed to the lack of quantifiable latency reversal in this model with low levels of persistent SHIV DNA prior to intervention as well as DART molecule immunogenicity.
Asunto(s)
Alquinos/farmacología , Antirretrovirales/farmacología , Anticuerpos Neutralizantes/farmacología , Anticuerpos Antivirales/farmacología , Infecciones por VIH/tratamiento farmacológico , Oligopéptidos/farmacología , Síndrome de Inmunodeficiencia Adquirida del Simio/tratamiento farmacológico , Viremia/tratamiento farmacológico , Animales , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/virología , Femenino , Regulación de la Expresión Génica , Infecciones por VIH/genética , Infecciones por VIH/inmunología , Infecciones por VIH/virología , VIH-1/efectos de los fármacos , VIH-1/crecimiento & desarrollo , VIH-1/inmunología , Humanos , Proteínas Inhibidoras de la Apoptosis/antagonistas & inhibidores , Proteínas Inhibidoras de la Apoptosis/genética , Proteínas Inhibidoras de la Apoptosis/inmunología , Macaca mulatta , FN-kappa B/genética , FN-kappa B/inmunología , Virus Reordenados/efectos de los fármacos , Virus Reordenados/crecimiento & desarrollo , Virus Reordenados/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/genética , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios/efectos de los fármacos , Virus de la Inmunodeficiencia de los Simios/crecimiento & desarrollo , Virus de la Inmunodeficiencia de los Simios/inmunología , Carga Viral/efectos de los fármacos , Viremia/genética , Viremia/inmunología , Viremia/virología , Latencia del Virus/efectos de los fármacos , Replicación Viral/efectos de los fármacosRESUMEN
The "shock and kill" strategy predicates that virus reactivation in latently infected cells is required to eliminate the human immunodeficiency virus (HIV) reservoir. In a recent study, we showed robust and persistent induction of plasma viremia in antiretroviral therapy (ART)-treated simian immunodeficiency virus-infected rhesus macaques (RMs) undergoing CD8α depletion and treated with the interleukin-15 (IL-15) superagonist N-803 (J. B. McBrien et al., Nature 578:154-159, 2020, https://doi.org/10.1038/s41586-020-1946-0). Of note, in that study we used an antibody targeting CD8α, thereby depleting NK cells, NKT cells, and γδ T cells, in addition to CD8+ T cells. In the current proof-of-concept study, we tested whether virus reactivation can be induced by administration of N-803 to simian-human chimeric immunodeficiency virus-infected, ART-treated RMs that are selectively depleted of CD8+ T cells via the CD8ß-targeting antibody CD8b255R1. CD8ß depletion was performed in five SHIVSF162P3-infected RMs treated with ART for 12 months and with plasma viremia consistently below 3 copies/ml. All animals received four weekly doses of N-803 starting at the time of CD8b255R1 administration. The induction of detectable plasma viremia was observed in three out of five RMs, with the level of virus reactivation seemingly correlated with the frequency of CD8+ T cells following CD8ß depletion as well as the level of virus reactivation observed when the same animals underwent CD8α depletion and N-803 administration after 24 weeks of ART. These data indicate that CD8ß depletion and N-803 administration can induce virus reactivation in SHIVSF162P3-infected RMs despite suboptimal depletion of CD8+ T cells and profound ART-induced suppression of virus replication, confirming a critical role for these cells in suppressing virus production and/or reactivation in vivo under ART.IMPORTANCE The "shock and kill" HIV cure strategy attempts to reverse and eliminate the latent viral infection that prevents eradication of the virus. Latency-reversing agents tested in clinical trials to date have failed to affect the HIV viral reservoir. IL-15 superagonist N-803, currently involved in a clinical trial for HIV cure, was recently shown by our laboratory to induce robust and persistent induction of plasma viremia during ART in three in vivo animal models of HIV infection. These results suggest a substantial role for CD8+ lymphocytes in suppressing the latency reversal effect of N-803 by promoting the maintenance of viral latency. In this study, we tested whether the use of a CD8ß-targeting antibody, which would specifically deplete CD8+ T cells, would yield similar levels of virus reactivation. We observed the induction of plasma viremia, which correlated with the efficacy of the CD8 depletion strategy.