Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Ultrasonics ; 118: 106549, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34474357

RESUMEN

The state-of-the-art configurations for acoustic-resolution photoacoustic (PA) microscope (AR-PAM) are large in size and expensive, hindering their democratization. While previous research on AR-PAMs introduced a low-cost light source to reduce the cost, few studies have investigated the possibility of optimizing the sensor actuation, particularly for the AR-PAM. Additionally, there is an unmet need to evaluate the image quality deterioration associated with the actuation inaccuracy. A low-cost actuation device is introduced to reduce the system size and cost of the AR-PAM while maintaining the image quality by implementing the advanced beamformers. This work proposes an AR-RAM incorporating the delta configuration actuator adaptable from a low-cost off-the-shelf 3D printer as the sensor actuation device. The image degradation due to the data acquisition positioning inaccuracy is evaluated in the simulation. We further assess the mitigation of potential actuation precision uncertainty through advanced 3D synthetic aperture focusing algorithms represented by the Delay-and-Sum (DAS) with Coherence Factor (DAS+CF) and Delay-Multiply-and-Sum (DMAS) algorithms. The simulation study demonstrated the tolerance of image quality on actuation inaccuracy and the effect of compensating the actuator motion precision error through advanced reconstruction algorithms. With those algorithms, the image quality degradation was suppressed to within 25% with the presence of 0.2 mm motion inaccuracy. The experimental evaluation using phantoms and an ex-vivo sample presented the applicability of low-cost delta configuration actuators for AR-PAMs. The measured full width at half maximum of the 0.2 mm diameter pencil-lead phantom were 0.45 ± 0.06 mm, 0.31 ± 0.04 mm, and 0.35 ± 0.07 mm, by applying the DAS, DAS+CF, and DMAS algorithms, respectively. AR-PAMs with a compact and low-cost delta configuration provide high-quality PA imaging with better accessibility for biomedical applications. The research evaluated the image degradation contributed by the actuation inaccuracy and suggested that the advanced beamformers are capable of suppressing the actuation inaccuracy.

2.
Artículo en Inglés | MEDLINE | ID: mdl-32782420

RESUMEN

Current standard workflows of ultrasound (US)-guided needle insertion require physicians to use their both hands: holding the US probe to locate interested areas with the non-dominant hand and the needle with the dominant hand. This is due to the separation of functionalities for localization and needle insertion. This requirement does not only make the procedure cumbersome, but also limits the reliability of guidance given that the positional relationship between the needle and US images is unknown and interpreted with their experience and assumption. Although the US-guided needle insertion may be assisted through navigation systems, recovery of the positional relationship between the needle and US images requires the usage of external tracking systems and image-based tracking algorisms that may involve the registration inaccuracy. Therefore, there is an unmet need for the solution that provides a simple and intuitive needle localization and insertion to improve the conventional US-guided procedure. In this work, we propose a new device concept solution based on the ring-arrayed forward-viewing (RAF) ultrasound imaging system. The proposed system is comprised with ring-arrayed transducers and an open whole inside the ring where the needle can be inserted. The ring array provides forward-viewing US images, where the needle path is always maintained at the center of the reconstructed image without requiring any registration. As the proof of concept, we designed single-circle ring-arrayed configurations with different radiuses and visualized point targets using the forward-viewing US imaging through simulations and phantom experiments. The results demonstrated the successful target visualization and indicates the ring-arrayed US imaging has a potential to improve the US-guided needle insertion procedure to be simpler and more intuitive.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...