Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 915, 2023 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-36807572

RESUMEN

Cellular cholesterol can be metabolized to its fatty acid esters, cholesteryl esters (CEs), to be stored in lipid droplets (LDs). With triacylglycerols (TGs), CEs represent the main neutral lipids in LDs. However, while TG melts at ~4 °C, CE melts at ~44 °C, raising the question of how CE-rich LDs form in cells. Here, we show that CE forms supercooled droplets when the CE concentration in LDs is above 20% to TG and, in particular, liquid-crystalline phases when the fraction of CEs is above 90% at 37 °C. In model bilayers, CEs condense and nucleate droplets when the CE/phospholipid ratio reaches over 10-15%. This concentration is reduced by TG pre-clusters in the membrane that thereby facilitate CE nucleation. Accordingly, blocking TG synthesis in cells is sufficient to strongly dampen CE LD nucleation. Finally, CE LDs emerged at seipins, which cluster and nucleate TG LDs in the ER. However, when TG synthesis is inhibited, similar numbers of LDs are generated in the presence and absence of seipin, suggesting that seipin controls CE LD formation via its TG clustering capacity. Our data point to a unique model whereby TG pre-clusters, favorable at seipins, catalyze the nucleation of CE LDs.


Asunto(s)
Ésteres del Colesterol , Gotas Lipídicas , Ésteres del Colesterol/metabolismo , Triglicéridos/metabolismo , Gotas Lipídicas/metabolismo , Colesterol/metabolismo
2.
EMBO J ; 40(14): e106871, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34124795

RESUMEN

Low-density lipoprotein (LDL)-cholesterol delivery from late endosomes to the plasma membrane regulates focal adhesion dynamics and cell migration, but the mechanisms controlling it are poorly characterized. Here, we employed auxin-inducible rapid degradation of oxysterol-binding protein-related protein 2 (ORP2/OSBPL2) to show that endogenous ORP2 mediates the transfer of LDL-derived cholesterol from late endosomes to focal adhesion kinase (FAK)-/integrin-positive recycling endosomes in human cells. In vitro, cholesterol enhances membrane association of FAK to PI(4,5)P2 -containing lipid bilayers. In cells, ORP2 stimulates FAK activation and PI(4,5)P2 generation in endomembranes, enhancing cell adhesion. Moreover, ORP2 increases PI(4,5)P2 in NPC1-containing late endosomes in a FAK-dependent manner, controlling their tubulovesicular trafficking. Together, these results provide evidence that ORP2 controls FAK activation and LDL-cholesterol plasma membrane delivery by promoting bidirectional cholesterol/PI(4,5)P2 exchange between late and recycling endosomes.


Asunto(s)
Transporte Biológico/fisiología , LDL-Colesterol/metabolismo , Endosomas/metabolismo , Quinasa 1 de Adhesión Focal/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Receptores de Esteroides/metabolismo , Adhesión Celular/fisiología , Línea Celular Tumoral , Membrana Celular/metabolismo , Movimiento Celular/fisiología , Humanos
3.
Traffic ; 21(5): 386-397, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32144825

RESUMEN

The human Niemann-Pick C1 (NPC1) gene encoding a 1278 amino acid protein is very heterogeneous. While some variants represent benign polymorphisms, NPC disease carriers and patients may possess rare variants, whose functional importance remains unknown. An NPC1 cDNA construct known as NPC1 wild-type variant (WT-V), distributed between laboratories and used as a WT control in several studies, also contains changes regarding specific amino acids compared to the NPC1 Genbank reference sequence. To improve the dissection of subtle functional differences, we generated human cells stably expressing NPC1 variants from the AAVS1 safe-harbor locus on an NPC1-null background engineered by CRISPR/Cas9 editing. We then employed high-content imaging with automated image analysis to quantitatively assess LDL-induced, time-dependent changes in lysosomal cholesterol content and lipid droplet formation. Our results indicate that the L472P change present in NPC1 WT-V compromises NPC1 functionality in lysosomal cholesterol export. All-atom molecular dynamics simulations suggest that the L472P change alters the relative position of the NPC1 middle and the C-terminal luminal domains, disrupting the recently characterized cholesterol efflux tunnel. These results reveal functional defects in NPC1 WT-V and highlight the strength of simulations and quantitative imaging upon stable protein expression in elucidating subtle differences in protein function.


Asunto(s)
Colesterol , Péptidos y Proteínas de Señalización Intracelular , Proteínas , Transporte Biológico , Colesterol/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Lisosomas/metabolismo , Simulación de Dinámica Molecular , Proteína Niemann-Pick C1 , Proteínas/metabolismo
4.
Mol Metab ; 28: 135-143, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31327756

RESUMEN

OBJECTIVE: Heat Shock Proteins (HSPs) maintain cellular homeostasis under stress. HSP70 represents a major stress-inducible family member and has been identified as a druggable target in inherited cholesterol-sphingolipid storage diseases. We investigated if HSP70 modulates cholesterol accumulation in more common conditions related to atherogenesis. METHODS: We studied the effects of recombinant HSP70 in cholesterol-laden primary macrophages from human blood donors and pharmacological HSP70 upregulation in high-cholesterol diet fed zebrafish. RESULTS: Recombinant HSP70 facilitated cholesterol removal from primary human macrophage foam cells. RNA sequencing revealed that HSP70 induced a robust transcriptional re-programming, including upregulation of key targets of liver X receptors (LXR), master regulators of whole-body cholesterol removal. Mechanistically, HSP70 interacted with the macrophage LXRalpha promoter, increased LXRalpha and its target mRNAs, and led to elevated levels of key proteins facilitating cholesterol efflux, including ATP-binding cassette transporters A1 and G1. Pharmacological augmentation of endogenous HSP70 in high-cholesterol diet fed zebrafish activated LXR and its target mRNAs and reduced cholesterol storage at the whole organism level. CONCLUSION: These data demonstrate that HSP70 exerts a cholesterol lowering effect in primary human cells and animals and uncover a nuclear action of HSP70 in mediating cross-talk between HSP and LXR transcriptional regulation.


Asunto(s)
Colesterol/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Receptores X del Hígado/metabolismo , Animales , Colesterol/administración & dosificación , Dieta , Humanos , Leucocitos Mononucleares/metabolismo , Macrófagos/metabolismo , Proteínas Recombinantes/metabolismo , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...