Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38014251

RESUMEN

Hypertrophic cardiomyopathy (HCM) results from pathogenic variants in sarcomeric protein genes, that increase myocyte energy demand and lead to cardiac hypertrophy. But it is unknown whether a common metabolic trait underlies the cardiac phenotype at early disease stage. This study characterized two HCM mouse models (R92W-TnT, R403Q-MyHC) that demonstrate differences in mitochondrial function at early disease stage. Using a combination of cardiac phenotyping, transcriptomics, mass spectrometry-based metabolomics and computational modeling, we discovered allele-specific differences in cardiac structure/function and metabolic changes. TnT-mutant hearts had impaired energy substrate metabolism and increased phospholipid remodeling compared to MyHC-mutants. TnT-mutants showed increased incorporation of saturated fatty acid residues into ceramides, cardiolipin, and increased lipid peroxidation, that could underlie allele-specific differences in mitochondrial function and cardiomyopathy.

2.
Anal Chem ; 95(28): 10618-10624, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37390485

RESUMEN

Glycosylation of metabolites serves multiple purposes. Adding sugars makes metabolites more water soluble and improves their biodistribution, stability, and detoxification. In plants, the increase in melting points enables storing otherwise volatile compounds that are released by hydrolysis when needed. Classically, glycosylated metabolites were identified by mass spectrometry (MS/MS) using [M-sugar] neutral losses. Herein, we studied 71 pairs of glycosides with their respective aglycones, including hexose, pentose, and glucuronide moieties. Using liquid chromatography (LC) coupled to electrospray ionization high-resolution mass spectrometry, we detected the classic [M-sugar] product ions for only 68% of glycosides. Instead, we found that most aglycone MS/MS product ions were conserved in the MS/MS spectra of their corresponding glycosides, even when no [M-sugar] neutral losses were observed. We added pentose and hexose units to the precursor masses of an MS/MS library of 3057 aglycones to enable rapid identification of glycosylated natural products with standard MS/MS search algorithms. When searching unknown compounds in untargeted LC-MS/MS metabolomics data of chocolate and tea, we structurally annotated 108 novel glycosides in standard MS-DIAL data processing. We uploaded this new in silico-glycosylated product MS/MS library to GitHub to enable users to detect natural product glycosides without authentic chemical standards.


Asunto(s)
Glicósidos , Espectrometría de Masas en Tándem , Glicósidos/análisis , Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem/métodos , Distribución Tisular , Espectrometría de Masa por Ionización de Electrospray/métodos , Iones , Azúcares , Cromatografía Líquida de Alta Presión/métodos
3.
J Chem Inf Model ; 62(17): 4049-4056, 2022 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-36043939

RESUMEN

Competitive Fragmentation Modeling for Metabolite Identification (CFM-ID) is a machine learning tool to predict in silico tandem mass spectra (MS/MS) for known or suspected metabolites for which chemical reference standards are not available. As a machine learning tool, it relies on both an underlying statistical model and an explicit training set that encompasses experimental mass spectra for specific compounds. Such mass spectra depend on specific parameters such as collision energies, instrument types, and adducts which are accumulated in libraries. Yet, ultimately prediction tools that are meant to cover wide expanses of entities must be validated on cases that were not included in the initial training and testing sets. Hence, we here benchmarked the performance of CFM-ID 4.0 to correctly predict MS/MS spectra for spectra that were not included in the CFM-ID training set and for different mass spectrometry conditions. We used 609,456 experimental tandem spectra from the NIST20 mass spectral library that were newly added to the previous NIST17 library version. We found that CFM-ID's highest energy prediction output would maximize the capacity for library generation. Matching the experimental collision energy with CFM-ID's prediction energy produced the best results, even for HCD-Orbitrap instruments. For benzenoids, better MS/MS predictions were achieved than for heterocyclic compounds. However, when exploring CFM-ID's performance on 8,305 compounds at 40 eV HCD-Orbitrap collision energy, >90% of the 20/80 split test compounds showed <700 MS/MS similarity score. Instead of a stand-alone tool, CFM-ID 4.0 might be useful to boost candidate structures in the greater context of identification workflows.


Asunto(s)
Benchmarking , Espectrometría de Masas en Tándem , Biblioteca de Genes , Modelos Estadísticos , Espectrometría de Masas en Tándem/métodos
4.
Nat Methods ; 18(12): 1524-1531, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34857935

RESUMEN

Compound identification in small-molecule research, such as untargeted metabolomics or exposome research, relies on matching tandem mass spectrometry (MS/MS) spectra against experimental or in silico mass spectral libraries. Most software programs use dot product similarity scores. Here we introduce the concept of MS/MS spectral entropy to improve scoring results in MS/MS similarity searches via library matching. Entropy similarity outperformed 42 alternative similarity algorithms, including dot product similarity, when searching 434,287 spectra against the high-quality NIST20 library. Entropy similarity scores proved to be highly robust even when we added different levels of noise ions. When we applied entropy levels to 37,299 experimental spectra of natural products, false discovery rates of less than 10% were observed at entropy similarity score 0.75. Experimental human gut metabolome data were used to confirm that entropy similarity largely improved the accuracy of MS-based annotations in small-molecule research to false discovery rates below 10%, annotated new compounds and provided the basis to automatically flag poor-quality, noisy spectra.


Asunto(s)
Biología Computacional/métodos , Intestinos/metabolismo , Metabolómica/métodos , Espectrometría de Masas en Tándem/métodos , Algoritmos , Cromatografía Liquida/métodos , Simulación por Computador , Entropía , Reacciones Falso Positivas , Humanos , Metaboloma , Curva ROC , Reproducibilidad de los Resultados , Programas Informáticos
5.
Metabolites ; 9(5)2019 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-31121816

RESUMEN

Mouse knockouts facilitate the study ofgene functions. Often, multiple abnormal phenotypes are induced when a gene is inactivated. The International Mouse Phenotyping Consortium (IMPC) has generated thousands of mouse knockouts and catalogued their phenotype data. We have acquired metabolomics data from 220 plasma samples from 30 unique mouse gene knockouts and corresponding wildtype mice from the IMPC. To acquire comprehensive metabolomics data, we have used liquid chromatography (LC) combined with mass spectrometry (MS) for detecting polar and lipophilic compounds in an untargeted approach. We have also used targeted methods to measure bile acids, steroids and oxylipins. In addition, we have used gas chromatography GC-TOFMS for measuring primary metabolites. The metabolomics dataset reports 832 unique structurally identified metabolites from 124 chemical classes as determined by ChemRICH software. The GCMS and LCMS raw data files, intermediate and finalized data matrices, R-Scripts, annotation databases, and extracted ion chromatograms are provided in this data descriptor. The dataset can be used for subsequent studies to link genetic variants with molecular mechanisms and phenotypes.

6.
Anal Chem ; 91(3): 2155-2162, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30608141

RESUMEN

Urine metabolites are used in many clinical and biomedical studies but usually only for a few classic compounds. Metabolomics detects vastly more metabolic signals that may be used to precisely define the health status of individuals. However, many compounds remain unidentified, hampering biochemical conclusions. Here, we annotate all metabolites detected by two untargeted metabolomic assays, hydrophilic interaction chromatography (HILIC)-Q Exactive HF mass spectrometry and charged surface hybrid (CSH)-Q Exactive HF mass spectrometry. Over 9,000 unique metabolite signals were detected, of which 42% triggered MS/MS fragmentations in data-dependent mode. On the highest Metabolomics Standards Initiative (MSI) confidence level 1, we identified 175 compounds using authentic standards with precursor mass, retention time, and MS/MS matching. An additional 578 compounds were annotated by precursor accurate mass and MS/MS matching alone, MSI level 2, including a novel library specifically geared at acylcarnitines (CarniBlast). The rest of the metabolome is usually left unannotated. To fill this gap, we used the in silico fragmentation tool CSI:FingerID and the new NIST hybrid search to annotate all further compounds (MSI level 3). Testing the top-ranked metabolites in CSI:Finger ID annotations yielded 40% accuracy when applied to the MSI level 1 identified compounds. We classified all MSI level 3 annotations by the NIST hybrid search using the ClassyFire ontology into 21 superclasses that were further distinguished into 184 chemical classes. ClassyFire annotations showed that the previously unannotated urine metabolome consists of 28% derivatives of organic acids, 16% heterocyclics, and 16% lipids as major classes.


Asunto(s)
Carnitina/metabolismo , Metabolómica , Carnitina/análogos & derivados , Carnitina/orina , Cromatografía Líquida de Alta Presión , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Espectrometría de Masas , Fenotipo
7.
Front Plant Sci ; 9: 1463, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30364174

RESUMEN

Plants within the Nitrogen-fixing Clade (NFC) of Angiosperms form root nodule symbioses with nitrogen-fixing bacteria. Actinorhizal plants (in Cucurbitales, Fagales, Rosales) form symbioses with the actinobacteria Frankia while legumes (Fabales) form symbioses with proteobacterial rhizobia. Flavonoids, secondary metabolites of the phenylpropanoid pathway, have been shown to play major roles in legume root nodule symbioses: as signal molecules that in turn trigger rhizobial nodulation initiation signals and acting as polar auxin transport inhibitors, enabling a key step in nodule organogenesis. To explore a potentially broader role for flavonoids in root nodule symbioses across the NFC, we combined metabolomic and transcriptomic analyses of roots and nodules of the actinorhizal host Datisca glomerata and legumes of the genus Medicago. Patterns of biosynthetic pathways were inferred from flavonoid metabolite profiles and phenylpropanoid gene expression patterns in the two hosts to identify similarities and differences. Similar classes of flavonoids were represented in both hosts, and an increase in flavonoids generally in the nodules was observed, with differences in flavonoids prominent in each host. While both hosts produced derivatives of naringenin, the metabolite profile in D. glomerata indicated an emphasis on the pinocembrin biosynthetic pathway, and an abundance of flavonols with potential roles in symbiosis. Additionally, the gene expression profile indicated a decrease in expression in the lignin/monolignol pathway. In Medicago sativa, by contrast, isoflavonoids were highly abundant featuring more diverse and derived isoflavonoids than D. glomerata. Gene expression patterns supported these differences in metabolic pathways, especially evident in a difference in expression of cinnamic acid 4-hydroxylase (C4H), which was expressed at substantially lower levels in D. glomerata than in a Medicago truncatula transcriptome where it was highly expressed. C4H is a major rate-limiting step in phenylpropanoid biosynthesis that separates the pinocembrin pathway from the lignin/monolignol and naringenin-based flavonoid branches. Shikimate O-hydroxycinnamoyltransferase, the link between flavonoid biosynthesis and the lignin/monolignol pathway, was also expressed at much lower levels in D. glomerata than in M. truncatula. Our results indicate (a) a likely major role for flavonoids in actinorhizal nodules, and (b) differences in metabolic flux in flavonoid and phenylpropanoid biosynthesis between the different hosts in symbiosis.

8.
Environ Sci Technol ; 52(12): 7092-7100, 2018 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-29792813

RESUMEN

Excess copper may disturb plant photosynthesis and induce leaf senescence. The underlying toxicity mechanism is not well understood. Here, 3-week-old cucumber plants were foliar exposed to different copper concentrations (10, 100, and 500 mg/L) for a final dose of 0.21, 2.1, and 10 mg/plant, using CuSO4 as the Cu ion source for 7 days, three times per day. Metabolomics quantified 149 primary and 79 secondary metabolites. A number of intermediates of the tricarboxylic acid (TCA) cycle were significantly down-regulated 1.4-2.4 fold, indicating a perturbed carbohydrate metabolism. Ascorbate and aldarate metabolism and shikimate-phenylpropanoid biosynthesis (antioxidant and defense related pathways) were perturbed by excess copper. These metabolic responses occur even at the lowest copper dose considered although no phenotype changes were observed at this dose. High copper dose resulted in a 2-fold increase in phytol, a degradation product of chlorophyll. Polyphenol metabolomics revealed that some flavonoids were down-regulated, while the nonflavonoid 4-hydroxycinnamic acid and trans-2-hydroxycinnamic acid were significantly up-regulated 4- and 26-fold compared to the control. This study enhances current understanding of copper toxicity to plants and demonstrates that metabolomics profiling provides a more comprehensive view of plant responses to stressors, which can be applied to other plant species and contaminants.


Asunto(s)
Cucumis sativus , Antioxidantes , Cobre , Metabolómica , Hojas de la Planta
9.
J Cheminform ; 9(1): 22, 2017 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-29086042

RESUMEN

BACKGROUND: The fourth round of the Critical Assessment of Small Molecule Identification (CASMI) Contest ( www.casmi-contest.org ) was held in 2016, with two new categories for automated methods. This article covers the 208 challenges in Categories 2 and 3, without and with metadata, from organization, participation, results and post-contest evaluation of CASMI 2016 through to perspectives for future contests and small molecule annotation/identification. RESULTS: The Input Output Kernel Regression (CSI:IOKR) machine learning approach performed best in "Category 2: Best Automatic Structural Identification-In Silico Fragmentation Only", won by Team Brouard with 41% challenge wins. The winner of "Category 3: Best Automatic Structural Identification-Full Information" was Team Kind (MS-FINDER), with 76% challenge wins. The best methods were able to achieve over 30% Top 1 ranks in Category 2, with all methods ranking the correct candidate in the Top 10 in around 50% of challenges. This success rate rose to 70% Top 1 ranks in Category 3, with candidates in the Top 10 in over 80% of the challenges. The machine learning and chemistry-based approaches are shown to perform in complementary ways. CONCLUSIONS: The improvement in (semi-)automated fragmentation methods for small molecule identification has been substantial. The achieved high rates of correct candidates in the Top 1 and Top 10, despite large candidate numbers, open up great possibilities for high-throughput annotation of untargeted analysis for "known unknowns". As more high quality training data becomes available, the improvements in machine learning methods will likely continue, but the alternative approaches still provide valuable complementary information. Improved integration of experimental context will also improve identification success further for "real life" annotations. The true "unknown unknowns" remain to be evaluated in future CASMI contests. Graphical abstract .

10.
Phytochem Lett ; 21: 306-312, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31576201

RESUMEN

In its fourth year, the CASMI 2016 contest was organized to evaluate current chemical structure identification strategies for 19 natural products using high-resolution LC-MS and LC-MS/MS challenge datasets using automated methods with or without the combination of other tools. These natural products originate from plants, fungi, marine sponges, algae, or micro-algae. Every compound annotation workflow must start with determination of elemental compositions. Of these 19 challenges, one was excluded by the organizers after submission. For the remaining 18 challenges, three software programs were used. MS-FINDER version 1.62 was able to correctly identify 89% of the molecular formulas using an internal database that comprised of 13 metabolomics repositories with 45,181 formulas. SIRIUS correctly identified 61% compositions using PubChem formulas and Seven Golden Rules correctly identified 83% by using the Dictionary of Natural Products as a targeted database. Next, we performed structural dereplication for which we used the consensus formula from the three software programs. We submitted two solution sets for these challenges. In the first solution set, avaniya001, we only used the internal MS-FINDER functions for predicting and ranking structures, correctly identifying 53% of the structures as top-hit, 72% within the top-3 structures, and 78% within the top-10 hits. For our second set, avaniya002, we used both MS-FINDER predictions as well as MS/MS queries against the commercial NIST 14, METLIN, and the public MassBank of North America libraries. Here we correctly identified 78% of the structures as top-hit and 83% within the top-3 hits. Three challenge spectra remained unidentified in either of our submissions within the top-10 hits.

11.
J Agric Food Chem ; 64(2): 505-12, 2016 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-26698107

RESUMEN

The taste and quality of red wine are determined by its highly complex mixture of polyphenols and many other metabolites. No single method can fully cover the full metabolome, but even for polyphenols and related compounds, current methods proved inadequate. We optimized liquid chromatography resolution and sensitivity using 1 mm i.d. columns with microLC pumps and compared data-dependent to data-independent (SWATH) MS/MS acquisitions. A high-throughput microLC-MS method was developed with a 4 min gradient at 0.05 mL/min flow rate on a Kinetex C18 column and Sciex TripleTOF mass spectrometry. Using the novel software MS-DIAL, we structurally annotated 264 compounds including 165 polyphenols in six commercial red wines by accurate mass MS/MS matching. As proof of concept, multivariate statistics revealed the difference in the metabolite profiles of the six red wines, and regression analysis linked the polyphenol contents to the taste of the red wines.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Metabolómica/métodos , Polifenoles/química , Espectrometría de Masas en Tándem/métodos , Vino/análisis
12.
J Cheminform ; 7: 53, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26579213

RESUMEN

BACKGROUND: A new lipid class named 'fatty acid esters of hydroxyl fatty acids' (FAHFA) was recently discovered in mammalian adipose tissue and in blood plasma and some FAHFAs were found to be associated with type 2 diabetes. To facilitate the automatic annotation of FAHFAs in biological specimens, a tandem mass spectra (MS/MS) library is needed. Due to the limitation of the commercial available standard compounds, we proposed building an in silico MS/MS library to extend the coverage of molecules. RESULTS: We developed a computer-generated library with 3267 tandem mass spectra (MS/MS) for 1089 FAHFA species. FAHFA spectra were generated based on authentic standards with negative mode electrospray ionization and 10, 20, and 40 V collision induced dissociation at 4 spectra/s as used in in ultra-high performance liquid chromatography-QTOF mass spectrometry studies. However, positional information of the hydroxyl group is only obtained either at lower QTOF spectra acquisition rates of 1 spectrum/s or at the MS(3) level in ion trap instruments. Therefore, an additional set of 4290 fragment-rich MS/MS spectra was created to enable distinguishing positional FAHFA isomers. The library was generated based on ion fragmentations and ion intensities of FAHFA external reference standards, developing a heuristic model for fragmentation rules and extending these rules to large swaths of computer-generated structures of FAHFAs with varying chain lengths, degrees of unsaturation and hydroxyl group positions. Subsequently, we validated the new in silico library by discovering several new FAHFA species in egg yolk, showing that this library enables high-throughput screening of FAHFA lipids in various biological matrices. CONCLUSIONS: The developed library and templates are freely available for commercial or noncommercial use at http://fiehnlab.ucdavis.edu/staff/yanma/fahfa-lipid-library. This in silico MS/MS library allows users to annotate FAHFAs from accurate mass tandem mass spectra in an easy and fast manner with NIST MS Search or PepSearch software. The developing template is provided for advanced users to modify the parameters and export customized libraries according to their instrument features. Graphical abstractExample of experimental and in silico MS/MS spectra for FAHFA lipids.

13.
Trends Analyt Chem ; 69: 52-61, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-26213431

RESUMEN

Identification of unknown metabolites is the bottleneck in advancing metabolomics, leaving interpretation of metabolomics results ambiguous. The chemical diversity of metabolism is vast, making structure identification arduous and time consuming. Currently, comprehensive analysis of mass spectra in metabolomics is limited to library matching, but tandem mass spectral libraries are small compared to the large number of compounds found in the biosphere, including xenobiotics. Resolving this bottleneck requires richer data acquisition and better computational tools. Multi-stage mass spectrometry (MSn) trees show promise to aid in this regard. Fragmentation trees explore the fragmentation process, generate fragmentation rules and aid in sub-structure identification, while mass spectral trees delineate the dependencies in multi-stage MS of collision-induced dissociations. This review covers advancements over the past 10 years as a tool for metabolite identification, including algorithms, software and databases used to build and to implement fragmentation trees and mass spectral annotations.

14.
J Chromatogr A ; 1244: 139-47, 2012 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-22608776

RESUMEN

Lipid secretions from algae pose a great opportunity for engineering biofueler feedstocks. The lipid exudates could be interesting from a process engineering perspective because lipids could be collected directly from the medium without harvesting and disrupting cells. We here report on the extracellular secretions of algal metabolites from the strain UTEX 2341 (Chlorella minutissima) into the culture medium. No detailed analysis of these lipid secretions has been performed to date. Using multiple mass spectrometric platforms, we observed around 1000 compounds and were able to annotate 50 lipids by means of liquid chromatography coupled to accurate mass quadrupole time-of-flight mass spectrometry (LC-QTOF), direct infusion with positive and negative electrospray ion trap mass spectrometry and gas chromatography coupled to mass spectrometry (GC-MS). These compounds were annotated by tandem mass spectral (MS/MS) database matching and retention time range filtering. We observed a series of triacylglycerols (TG), sulfoquinovosyldiacylglycerols (SQDG), phosphatidylinositols and phosphatidylglycerols, as well as betaine lipids diacylglyceryl-N,N,N-trimethylhomoserines (DGTS).


Asunto(s)
Chlorella/química , Cromatografía Liquida/métodos , Cromatografía de Gases y Espectrometría de Masas/métodos , Lípidos/análisis , Espectrometría de Masas en Tándem/métodos , Biocombustibles , Chlorella/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Metabolismo de los Lípidos , Lípidos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA