Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Front Pharmacol ; 15: 1365151, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38689663

RESUMEN

Preparations of black cohosh extract are sold as dietary supplements marketed to relieve the vasomotor symptoms of menopause, and some studies suggest it may protect against postmenopausal bone loss. Postmenopausal women are also frequently prescribed bisphosphonates, such as risedronate, to prevent osteoporotic bone loss. However, the pharmacodynamic interactions between these compounds when taken together is not known. To investigate possible interactions, 6-month-old, female Sprague-Dawley rats underwent bilateral ovariectomy or sham surgery and were treated for 24 weeks with either vehicle, ethinyl estradiol, risedronate, black cohosh extract or coadministration of risedronate and black cohosh extract, at low or high doses. Bone mineral density (BMD) of the femur, tibia, and lumbar vertebrae was then measured by dual-energy X-ray absorptiometry (DEXA) at weeks 0, 8, 16, and 24. A high dose of risedronate significantly increased BMD of the femur and vertebrae, while black cohosh extract had no significant effect on BMD individually and minimal effects upon coadministration with risedronate. Under these experimental conditions, black cohosh extract alone had no effect on BMD, nor did it negatively impact the BMD-enhancing properties of risedronate.

2.
Food Chem Toxicol ; 183: 114333, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38061571

RESUMEN

The 6:2 fluorotelomer alcohol (6:2 FTOH) is a common impurity in per- and polyfluoroalkyl substances (PFASs) used in many applications. Our previous toxicokinetic (TK) evaluation of 6:2 FTOH calculated times to steady state (tss) of one of its metabolites, 5:3 fluorotelomer carboxylic acid (5:3A), in the plasma and tissues of up to a year after oral exposure to rats. Our current work further elucidated the TK of 5:3A and other metabolites of 6:2 FTOH in pregnant and nonpregnant rats after repeated oral exposure and examined the role of renal transporters in the biopersistence of 5:3A. The tss values for 5:3A in serum and tissues of adult nonpregnant animals ranged from 150 days to over a year. 4:3 fluorotelomer carboxylic acid (4:3A) was an additional potentially-biopersistent metabolite. 5:3A was the major metabolite of 6:2 FTOH in serum of pregnant dams and fetuses at each time interval. 5:3A was not a substrate for renal transporters in a human kidney cell line in vitro, indicating that renal reuptake of 5:3A is unlikely contribute to its biopersistence. Further research is needed to identify the underlying processes and evaluate the impact of these 6:2 FTOH metabolites on human health.


Asunto(s)
Fluorocarburos , Ratas , Humanos , Animales , Embarazo , Femenino , Toxicocinética , Fluorocarburos/toxicidad , Fluorocarburos/química , Transporte Biológico , Ácidos Carboxílicos
3.
Arch Toxicol ; 98(1): 335-345, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37874342

RESUMEN

Triclosan is a widely used antimicrobial agent in personal care products, household items, medical devices, and clinical settings. Due to its extensive use, there is potential for humans in all age groups to receive lifetime exposures to triclosan, yet data on the chronic dermal toxicity/carcinogenicity of triclosan are still lacking. We evaluated the toxicity/carcinogenicity of triclosan administered dermally to B6C3F1 mice for 104 weeks. Groups of 48 male and 48 female B6C3F1 mice received dermal applications of 0, 1.25, 2.7, 5.8, or 12.5 mg triclosan/kg body weight (bw)/day in 95% ethanol, 7 days/week for 104 weeks. Vehicle control animals received 95% ethanol only; untreated, naïve control mice did not receive any treatment. There were no significant differences in survival among the groups. The highest dose of triclosan significantly decreased the body weight of mice in both sexes, but the decrease was ≤ 9%. Minimal-to-mild epidermal hyperplasia, suppurative inflammation (males only), and ulceration (males only) were observed at the application site in the treated groups, with the highest incidence occurring in the 12.5 mg triclosan/kg bw/day group. No tumors were identified at the application site. Female mice had a positive trend in the incidence of pancreatic islet adenoma. In male mice, there were positive trends in the incidences of hepatocellular carcinoma and hepatocellular adenoma or carcinoma (combined), with the increase of carcinoma being significant in the 5.8 and 12.5 mg/kg/day groups and the increase in hepatocellular adenoma or carcinoma (combined) being significant in the 2.7, 5.8, and 12.5 mg/kg/day groups.


Asunto(s)
Adenoma de Células Hepáticas , Carcinoma Hepatocelular , Neoplasias Hepáticas , Triclosán , Ratas , Humanos , Ratones , Masculino , Femenino , Animales , Triclosán/toxicidad , Ratas Endogámicas F344 , Pruebas de Carcinogenicidad , Ratones Endogámicos , Etanol , Peso Corporal
4.
Int J Mol Sci ; 24(7)2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-37047323

RESUMEN

First-pass metabolism alters arsenic biotransformation and its immunomodulatory activities. This study aims to determine the mRNA expression of intestinal-immunity- and permeability-associated genes, levels of cytokine/chemokines and levels of immunoglobulin isotypes when CD-1 mice were exposed to a single dose of intravenous (IV) sodium arsenite (50 µg/kg body weight (BW)) and to compare these responses to exposure via oral gavage (OG) (50 µg/kg BW). Samples were collected at 1, 4, 24 and 48 h post IV exposure and 24 and 48 h post OG. Sodium arsenite IV exposure led to a transient modulation of mRNA expression and protein levels of immunity-related genes involved in inflammation/apoptotic pathways and production of cytokines/chemokines, whereas it also led to downregulated expression of genes encoding tight junction, focal adhesion, and gap junction proteins, which are responsible for maintaining cell permeability. Oral exposure perturbed fewer cell-permeability-related genes at 24 and 48 h post exposure. At 24 h post exposure, OG decreased IgA and IgG2b levels; however, IV exposure significantly increased IgG2b, IgG3 and IgA in ileal tissue. Earlier, we showed significant downregulation of mRNA expression of genes involved in the immune-related pathways during OG in the intestinal mucosa of the same animals. Cumulatively, these results provide evidence that the exposure route of a xenobiotic can differentially impact the intestinal responses due to the impact of first-pass metabolism.


Asunto(s)
Arsénico , Ratones , Animales , Arsénico/toxicidad , Arsénico/metabolismo , Mucosa Intestinal/metabolismo , Citocinas/genética , Citocinas/metabolismo , Permeabilidad , Inmunoglobulina A/metabolismo , Inmunidad , ARN Mensajero/metabolismo
5.
Toxicol Lett ; 359: 22-30, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35092809

RESUMEN

Polyethylene glycol (PEG) is present in a variety of products. Little is known regarding the accumulation of high-molecular-weight PEGs or the long-term effects resulting from PEG accumulation in certain tissues, especially the choroid plexus. We evaluated the toxicity of high-molecular-weight PEGs administered to Sprague Dawley rats. Groups of 12 rats per sex were administered subcutaneous injections of 20, 40, or 60 kDa PEG or intravenous injections of 60 kDa PEG at 100 mg PEG/kg body weight/injection once a week for 24 weeks. A significant decrease in triglycerides occurred in the 60 kDa PEG groups. PEG treatment led to a molecular-weight-related increase in PEG in plasma and a low level of PEG in cerebrospinal fluid. PEG was excreted in urine and feces, with a molecular-weight-related decrease in the urinary excretion. A higher prevalence of anti-PEG IgM was observed in PEG groups; anti-PEG IgG was not detected. PEG treatment produced a molecular-weight-related increase in vacuolation in the spleen, lymph nodes, lungs, and ovaries/testes, without an inflammatory response. Mast cell infiltration at the application site was noted in all PEG-treated groups. These data indicate that subcutaneous and intravenous exposure to high-molecular-weight PEGs produces anti-PEG IgM antibody responses and tissue vacuolation without inflammation.


Asunto(s)
Anticuerpos/sangre , Formación de Anticuerpos/efectos de los fármacos , Plexo Coroideo/efectos de los fármacos , Polietilenglicoles/toxicidad , Animales , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Femenino , Inyecciones Intravenosas , Inyecciones Subcutáneas , Masculino , Peso Molecular , Ratas , Ratas Sprague-Dawley
6.
Environ Mol Mutagen ; 61(2): 216-223, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31569280

RESUMEN

DNA adducts of carcinogenic polycyclic aromatic hydrocarbons (PAHs) play a critical role in the etiology of gastrointestinal tract cancers in humans and other species orally exposed to PAHs. Yet, the precise localization of PAH-DNA adducts in the gastrointestinal tract, and the long-term postmortem PAH-DNA adduct stability are unknown. To address these issues, the following experiment was performed. Mice were injected intraperitoneally with the PAH carcinogen benzo[a]pyrene (BP) and euthanized at 24 h. Tissues were harvested either at euthanasia (0 time), or after 4, 8, 12, 24, 48, and 168 hr (7 days) of storage at 4°C. Portions of mouse tissues were formalin-fixed, paraffin-embedded, and immunohistochemically (IHC) evaluated by incubation with r7,t8-dihydroxy-t-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE)-DNA antiserum and H-scoring. The remaining tissues were frozen, and DNA was extracted and assayed for the r7,t8,t9-trihydroxy-c-10-(N 2 -deoxyguanosyl)-7,8,9,10-tetrahydrobenzo[a]pyrene (BPdG) adduct using two quantitative assays, the BPDE-DNA chemiluminescence immunoassay (CIA), and high-performance liquid chromatography electrospray ionization tandem mass spectrometry (HPLC-ES-MS/MS). By IHC, which required intact nuclei, BPdG adducts were visualized in forestomach basal cells, which included gastric stem cells, for up to 7 days. In proximal small intestine villus epithelium BPdG adducts were visualized for up to 12 hr. By BPDE-DNA CIA and HPLC-ES-MS/MS, both of which used DNA for analysis and correlated well (P= 0.0001), BPdG adducts were unchanged in small intestine, forestomach, and lung stored at 4°C for up to 7 days postmortem. In addition to localization of BPdG adducts, this study reveals the feasibility of examining PAH-DNA adduct formation in wildlife species living in colder climates. Environ. Mol. Mutagen. 61:216-223, 2020. © 2019 Wiley Periodicals, Inc.


Asunto(s)
Benzo(a)pireno/análisis , Carcinógenos Ambientales/análisis , Aductos de ADN/análisis , Animales , Benzo(a)pireno/administración & dosificación , Carcinógenos Ambientales/administración & dosificación , Cromatografía Líquida de Alta Presión , Aductos de ADN/administración & dosificación , Intestino Delgado/química , Mediciones Luminiscentes , Masculino , Ratones , Estómago/química , Espectrometría de Masas en Tándem , Distribución Tisular
7.
Regul Toxicol Pharmacol ; 108: 104436, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31381939

RESUMEN

BACKGROUND: In recent years, there has been great interest from academia, industry and government scientists for an increased understanding of the mode of action of vaccine adjuvants to characterize the safety and efficacy of vaccines. In this context, pharmacokinetic (PK) and biodistribution studies are useful for quantifying the concentration of vaccine adjuvants in mechanistically or toxicologically relevant target tissues. METHODS: In this study, we conducted a comparative analysis of the PK and biodistribution profile of radiolabeled squalene for up to 336 h (14 days) after intramuscular injection of mice with adjuvanted H5N1 influenza vaccines. The evaluated adjuvants included an experimental-grade squalene-in-water (SQ/W) emulsion (AddaVax®) and an adjuvant system (AS03®) that contained squalene and α-tocopherol in the oil phase of the emulsion. RESULTS: The half-life of the initial exponential decay from quadriceps muscle was 1.5 h for AS03 versus 12.9 h for AddaVax. At early time points (1-6 h), there was about a 10-fold higher concentration of labeled squalene in draining lymph nodes following AS03 injection compared to AddaVax. The area-under-concentration curve up to 336 h (AUC0-336hr) and peak concentration of squalene in spleen (immune organ) was about 1.7-fold higher following injection of AS03 than AddaVax. The peak systemic tissue concentration of squalene from the two adjuvants, with or without antigen, remained below 1% of injected dose for toxicologically relevant target tissues, such as spinal cord, brain, and kidney. The pharmacokinetics of AS03 was unaffected by the presence of H5N1 antigen. CONCLUSIONS: This study demonstrates a rapid decline of AS03 from the quadriceps muscles of mice as compared to conventional SQ/W emulsion adjuvant, with an increased transfer to mechanistically relevant tissues such as local lymph nodes. Systemic tissue exposure to potential toxicological target tissues was very low.


Asunto(s)
Adyuvantes Inmunológicos/farmacocinética , Subtipo H5N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/farmacocinética , Polisorbatos/farmacocinética , Escualeno/farmacocinética , alfa-Tocoferol/farmacocinética , Animales , Antígenos/inmunología , Combinación de Medicamentos , Emulsiones , Femenino , Inyecciones Intramusculares , Ganglios Linfáticos/metabolismo , Masculino , Ratones Endogámicos BALB C , Músculo Cuádriceps/metabolismo , Distribución Tisular
8.
Epigenetics ; 13(7): 704-720, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30001178

RESUMEN

Bisphenol A (BPA), an endocrine disrupting chemical (EDC), is a ubiquitous pollutant. As part of the Consortium Linking Academic and Regulatory Insights on BPA Toxicity (CLARITY-BPA), we sought to determine whether exposure of Sprague-Dawley rats to 2,500 µg/kg/day BPA (BPA) or 0.5 µg/kg/day ethinyl estradiol (EE) from gestational day 6 through postnatal day 21 induces behavior-relevant gene expression and DNA methylation changes in hippocampus and hypothalamus at adulthood. RNA and DNA were isolated from both regions. Expression of ten genes (Dnmt1, Dnmt3a, Dnmt3b, Esr1, Esr2, Avp, Ar, Oxt, Otr, and Bdnf) presumably altered by early-life BPA/EE exposure was examined. Three genes (Bdnf, Dnmt3b, and Esr1) were studied for DNA methylation changes in their putative 5' promoter regions. Molecular changes in hippocampus were correlated to prior Barnes maze performance, including sniffing correct holes, distance traveled, and velocity. Exposure to BPA and/or EE disrupted patterns of sexually dimorphic gene expression/promoter DNA methylation observed in hippocampus and hypothalamus of controls. In the hippocampus of female offspring, BPA exposure resulted in hypermethylation of the putative 5' promoter region of Bdnf, while EE exposure induced hypomethylation. Bdnf methylation was weakly associated with Bdnf expression in hippocampi of female rats. Hippocampal Bdnf expression in females showed a weak negative association with sniffing correct hole in Barnes maze. Hippocampal expression of Avp, Esr2, Oxt, and Otr was strongly associated with velocity of control rats in Barnes maze. Findings suggest BPA exposure induced non-EE-like gene expression and epigenetic changes in adult rat hippocampi, a region involved in spatial navigation.


Asunto(s)
Compuestos de Bencidrilo/toxicidad , Metilación de ADN/efectos de los fármacos , Disruptores Endocrinos/toxicidad , Etinilestradiol/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Hipocampo/efectos de los fármacos , Fenoles/toxicidad , Efectos Tardíos de la Exposición Prenatal/patología , Animales , Animales Recién Nacidos , Conducta Animal/efectos de los fármacos , Estrógenos/farmacología , Femenino , Hipocampo/metabolismo , Hipocampo/patología , Masculino , Embarazo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Efectos Tardíos de la Exposición Prenatal/tratamiento farmacológico , Efectos Tardíos de la Exposición Prenatal/genética , Ratas , Ratas Sprague-Dawley
9.
Toxicol Appl Pharmacol ; 347: 1-9, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29596923

RESUMEN

Bisphenol A (BPA) is a ubiquitous industrial chemical that has been identified as an endocrine disrupting compound (EDC). There is growing concern that early life exposures to EDCs, such as BPA, can adversely affect the male reproductive tract and function. This study was conducted as part of the Consortium Linking Academic and Regulatory Insights on BPA Toxicity (CLARITY-BPA) to further delineate the toxicities associated with continuous exposure to BPA from early gestation, and to comprehensively examine the elicited effects on testes and sperm. NCTR Sprague Dawley rat dams were gavaged from gestational day (GD) 6 until parturition, and their pups were directly gavaged daily from postnatal day (PND) 1 to 90 with BPA (2.5, 25, 250, 2500, 25,000, 250,000 µg/kg/d) or vehicle control. At PND 90, the testes and sperm were collected for evaluation. The testes were histologically evaluated for altered germ cell apoptosis, sperm production, and altered spermiation. RNA and DNA isolated from sperm were assessed for elicited changes in global mRNA transcript abundance and altered DNA methylation. Effects of BPA were observed in changes in body, testis and epididymis weights only at the highest administered dose of BPA of 250,000 µg/kg/d. Genome-wide transcriptomic and epigenomic analyses failed to detect robust alterations in sperm mRNA and DNA methylation levels. These data indicate that prolonged exposure starting in utero to BPA over a wide range of levels has little, if any, impact on the testes and sperm molecular profiles of 90 day old rats as assessed by the histopathologic, morphometric, and molecular endpoints evaluated.


Asunto(s)
Compuestos de Bencidrilo/toxicidad , Contaminantes Ambientales/toxicidad , Fenoles/toxicidad , Efectos Tardíos de la Exposición Prenatal , Espermatozoides/efectos de los fármacos , Testículo/efectos de los fármacos , Factores de Edad , Animales , Apoptosis/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Femenino , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Edad Gestacional , Masculino , Exposición Materna/efectos adversos , Embarazo , Ratas Sprague-Dawley , Recuento de Espermatozoides , Espermatogénesis/efectos de los fármacos , Espermatozoides/metabolismo , Espermatozoides/patología , Testículo/embriología , Testículo/metabolismo , Testículo/patología
10.
Regul Toxicol Pharmacol ; 81: 113-119, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27498239

RESUMEN

Squalene is a component of oil-in-water emulsion adjuvants developed for potential use in some influenza vaccines. The biodistribution of the squalene-containing emulsion adjuvant (AddaVax™) alone and as part of complete H5N1 vaccine was quantified in mechanistically and toxicologically relevant target tissues up to 336 h (14 days) following injection into quadriceps muscle. At 1 h, about 55% of the intramuscularly injected dose of squalene was detected in the local quadriceps muscles and this decreased to 26% at 48 h. Twenty-four hours after the injection, approximately 5%, 1%, and 0.6% of the injected dose was detected in inguinal fat, draining lymph nodes, and sciatic nerve, respectively. The peak concentration for kidney, brain, spinal cord, bone marrow, and spleen was each less than 1% of the injected dose, and H5N1 antigen did not significantly alter the biodistribution of squalene to these tissues. The area-under-blood-concentration curve (AUC) and peak blood concentration (Cmax) of squalene were slightly higher (20-25%) in the presence of H5N1 antigen. A population pharmacokinetic model-based statistical analysis identified body weight and H5N1 antigen as covariates influencing the clearance of squalene. The results contribute to the body of knowledge informing benefit-risk analyses of squalene-containing emulsion vaccine adjuvants.


Asunto(s)
Adyuvantes Inmunológicos/farmacocinética , Subtipo H5N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/farmacocinética , Polisorbatos/farmacocinética , Escualeno/farmacocinética , Adyuvantes Inmunológicos/administración & dosificación , Adyuvantes Inmunológicos/sangre , Adyuvantes Inmunológicos/toxicidad , Animales , Área Bajo la Curva , Simulación por Computador , Emulsiones , Femenino , Semivida , Vacunas contra la Influenza/administración & dosificación , Vacunas contra la Influenza/sangre , Vacunas contra la Influenza/toxicidad , Inyecciones Intramusculares , Masculino , Tasa de Depuración Metabólica , Ratones Endogámicos BALB C , Modelos Biológicos , Dinámicas no Lineales , Polisorbatos/administración & dosificación , Polisorbatos/toxicidad , Medición de Riesgo , Escualeno/administración & dosificación , Escualeno/sangre , Escualeno/toxicidad , Distribución Tisular , Toxicocinética
12.
Food Chem Toxicol ; 94: 39-56, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27234134

RESUMEN

Diet is an important variable in toxicology. There are mixed reports on the impact of soy components on energy utilization, fat deposition, and reproductive parameters. Three generations of CD-1 mice were fed irradiated natural ingredient diets with varying levels of soy (NIH-41, 5K96, or 5008/5001), purified irradiated AIN-93 diet, or the AIN-93 formulation modified with ethanol-washed soy protein concentrate (SPC) or SPC with isoflavones (SPC-IF). NIH-41 was the control for pairwise comparisons. Minimal differences were observed among natural ingredient diet groups. F0 males fed AIN-93, SPC, and SPC-IF diets had elevated glucose levels and lower insulin levels compared with the NIH-41 group. In both sexes of the F1 and F2 generations, the SPC and SPC-IF groups had lower body weight gains than the NIH-41 controls and the AIN-93 group had an increased percent body fat at postnatal day 21. AIN-93 F1 pups had higher baseline glucose than NIH-41 controls, but diet did not significantly affect breeding performance or responses to glucose or uterotrophic challenges. Reduced testes weight and sperm in the AIN-93 group may be related to low thiamine levels. Our observations underline the importance of careful selection, manufacturing procedures, and nutritional characterization of diets used in toxicological studies.


Asunto(s)
Dieta , Isoflavonas/análisis , Proteínas de Soja/análisis , Pruebas de Toxicidad , Animales , Femenino , Masculino , Ratones
13.
Horm Behav ; 80: 139-148, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26436835

RESUMEN

Bisphenol A (BPA) is a ubiquitous industrial chemical used in the production of a wide variety of items. Previous studies suggest BPA exposure may result in neuro-disruptive effects; however, data are inconsistent across animal and human studies. As part of the Consortium Linking Academic and Regulatory Insights on BPA Toxicity (CLARITY-BPA), we sought to determine whether female and male rats developmentally exposed to BPA demonstrated later spatial navigational learning and memory deficits. Pregnant NCTR Sprague-Dawley rats were orally dosed from gestational day 6 to parturition, and offspring were directly orally dosed until weaning (postnatal day 21). Treatment groups included a vehicle control, three BPA doses (2.5µg/kg body weight (bw)/day-[2.5], 25µg/kg bw/day-[25], and 2500µg/kg bw/day-[2500]) and a 0.5µg/kg/day ethinyl estradiol (EE)-reference estrogen dose. At adulthood, 1/sex/litter was tested for seven days in the Barnes maze. The 2500 BPA group sniffed more incorrect holes on day 7 than those in the control, 2.5 BPA, and EE groups. The 2500 BPA females were less likely than control females to locate the escape box in the allotted time (p value=0.04). Although 2.5 BPA females exhibited a prolonged latency, the effect did not reach significance (p value=0.06), whereas 2.5 BPA males showed improved latency compared to control males (p value=0.04), although the significance of this result is uncertain. No differences in serum testosterone concentration were detected in any male or female treatment groups. Current findings suggest developmental exposure of rats to BPA may disrupt aspects of spatial navigational learning and memory.


Asunto(s)
Compuestos de Bencidrilo/toxicidad , Estrógenos no Esteroides/toxicidad , Fenoles/toxicidad , Efectos Tardíos de la Exposición Prenatal , Aprendizaje Espacial/efectos de los fármacos , Memoria Espacial/efectos de los fármacos , Animales , Relación Dosis-Respuesta a Droga , Etinilestradiol/farmacología , Femenino , Humanos , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Embarazo , Ratas , Ratas Sprague-Dawley , Navegación Espacial
14.
Food Chem Toxicol ; 81: 92-103, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25862956

RESUMEN

Bisphenol A (BPA), an industrial chemical used in the manufacture of polycarbonate and epoxy resins, binds to the nuclear estrogen receptor with an affinity 4-5 orders of magnitude lower than that of estradiol. We reported previously that "high BPA" [100,000 and 300,000 µg/kg body weight (bw)/day], but not "low BPA" (2.5-2700 µg/kg bw/day), induced clear adverse effects in NCTR Sprague-Dawley rats gavaged daily from gestation day 6 through postnatal day (PND) 90. The "high BPA" effects partially overlapped those of ethinyl estradiol (EE2, 0.5 and 5.0 µg/kg bw/day). To evaluate further the potential of "low BPA" to induce biological effects, here we assessed the global genomic DNA methylation and gene expression in the prostate and female mammary glands, tissues identified previously as potential targets of BPA, and uterus, a sensitive estrogen-responsive tissue. Both doses of EE2 modulated gene expression, including of known estrogen-responsive genes, and PND 4 global gene expression data showed a partial overlap of the "high BPA" effects with those of EE2. The "low BPA" doses modulated the expression of several genes; however, the absence of a dose response reduces the likelihood that these changes were causally linked to the treatment. These results are consistent with the toxicity outcomes.


Asunto(s)
Compuestos de Bencidrilo/administración & dosificación , Compuestos de Bencidrilo/toxicidad , Metilación de ADN/efectos de los fármacos , Glándulas Mamarias Animales/efectos de los fármacos , Fenoles/administración & dosificación , Fenoles/toxicidad , Próstata/efectos de los fármacos , Útero/efectos de los fármacos , Administración Oral , Animales , Cromatografía Liquida , Complemento C3/genética , Complemento C3/metabolismo , Relación Dosis-Respuesta a Droga , Etinilestradiol/administración & dosificación , Etinilestradiol/toxicidad , Femenino , Expresión Génica , Genómica/métodos , Masculino , Glándulas Mamarias Animales/metabolismo , Metiltransferasas/metabolismo , Embarazo , Efectos Tardíos de la Exposición Prenatal/patología , Próstata/metabolismo , Unión Proteica , Ratas , Ratas Sprague-Dawley , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Proteína G de Unión al Calcio S100/genética , Proteína G de Unión al Calcio S100/metabolismo , Espectrometría de Masas en Tándem , Útero/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
15.
Toxicol Sci ; 140(1): 190-203, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24752507

RESUMEN

Concerns have been raised regarding the long-term impacts of early life exposure to the ubiquitous environmental contaminant bisphenol A (BPA) on brain organization. Because BPA has been reported to affect estrogen signaling, and steroid hormones play a critical role in brain sexual differentiation, there is also concern that BPA exposure could alter neural sex differences. Here, we examine the impact of subchronic exposure from gestation to adulthood to oral doses of BPA below the current no-observed-adverse-effect level (NOAEL) of 5 mg/kg body weight (bw)/day on estrogen receptor (ESR) expression in sexually dimorphic brain regions of prepubertal and adult female rats. The dams were gavaged daily with vehicle (0.3% carboxymethylcellulose), 2.5, 25, 260, or 2700 µg BPA/kg bw/day, or 0.5 or 5.0 µg ethinyl estradiol (EE)/kg bw/day from gestational day 6 until labor began. Offspring were then gavaged directly from the day after birth until the day before scheduled sacrifice on postnatal days 21 or 90. Using in situ hybridization, one or more BPA doses produced significant decreases in Esr1 expression in the juvenile female rat anteroventral periventricular nucleus (AVPV) of the hypothalamus and significant decreases in Esr2 expression in the adult female rat AVPV and medial preoptic area (MPOA), relative to vehicle controls. BPA did not simply reproduce EE effects, indicating that BPA is not acting solely as an estrogen mimic. The possible consequences of long-term changes in hypothalamic ESR expression resulting from subchronic low dose BPA exposure on neuroendocrine effects are discussed and being addressed in ongoing, related work.


Asunto(s)
Envejecimiento , Compuestos de Bencidrilo/toxicidad , Etinilestradiol/toxicidad , Hipotálamo/efectos de los fármacos , Fenoles/toxicidad , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Receptores de Estrógenos/genética , Envejecimiento/metabolismo , Animales , Relación Dosis-Respuesta a Droga , Receptor alfa de Estrógeno/genética , Receptor beta de Estrógeno/genética , Femenino , Expresión Génica/efectos de los fármacos , Hipotálamo/embriología , Hipotálamo/crecimiento & desarrollo , Hipotálamo/metabolismo , Masculino , Embarazo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Ratas Sprague-Dawley , Caracteres Sexuales
16.
Toxicol Sci ; 139(1): 174-97, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24496637

RESUMEN

Bisphenol A (BPA) is a high production volume industrial chemical to which there is widespread human oral exposure. Guideline studies used to set regulatory limits detected adverse effects only at doses well above human exposures and established a no-observed-adverse-effect level (NOAEL) of 5 mg/kg body weight (bw)/day. However, many reported animal studies link BPA to potentially adverse effects on multiple organ systems at doses below the NOAEL. The primary goals of the subchronic study reported here were to identify adverse effects induced by orally (gavage) administered BPA below the NOAEL, to characterize the dose response for such effects and to determine doses for a subsequent chronic study. Sprague Dawley rat dams were dosed daily from gestation day 6 until the start of labor, and their pups were directly dosed from day 1 after birth to termination. The primary focus was on seven equally spaced BPA doses (2.5-2700 µg/kg bw/day). Also included were a naïve control, two doses of ethinyl estradiol (EE2) to demonstrate the estrogen responsiveness of the animal model, and two high BPA doses (100,000 and 300,000 µg/kg bw/day) expected from guideline studies to produce adverse effects. Clear adverse effects of BPA, including depressed gestational and postnatal body weight gain, effects on the ovary (increased cystic follicles, depleted corpora lutea, and antral follicles), and serum hormones (increased serum estradiol and prolactin and decreased progesterone), were observed only at the two high doses of BPA. BPA-induced effects partially overlapped those induced by EE2, consistent with the known weak estrogenic activity of BPA.


Asunto(s)
Compuestos de Bencidrilo/toxicidad , Exposición Materna , Fenoles/toxicidad , Animales , Compuestos de Bencidrilo/administración & dosificación , Peso Corporal , Femenino , Masculino , Nivel sin Efectos Adversos Observados , Tamaño de los Órganos , Fenoles/administración & dosificación , Embarazo , Ratas , Ratas Sprague-Dawley
17.
Toxicol Sci ; 139(1): 4-20, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24496641

RESUMEN

Bisphenol A (BPA) was administered by gavage (2.5-300,000 µg/kg body weight (bw)/day) to pregnant Sprague Dawley dams, newborn pups, and continuing into adulthood. Aglycone (i.e., unconjugated and active) and conjugated (i.e., inactive) BPA were evaluated by liquid chromatography electrospray tandem mass spectrometry (LC-ES/MS/MS) in serum to better interpret toxicological endpoints measured in the study. Ethinyl estradiol (EE2, 0.5 and 5 µg/kg bw/day) and the endogenous hormones, 17ß-estradiol (E2) and testosterone, were similarly evaluated. Mean BPA aglycone levels in vehicle and naïve control rat serum (0.02-0.5 ng/ml) indicated sample processing artifact, consistent with literature reports of a propensity for postexposure blood contamination by BPA. Direct measurements of BPA-glucuronide in vehicle and naïve control serum (2-10nM) indicated unintentional exposure and metabolism at levels similar to those produced by 2.5 µg/kg bw/day BPA (7-10nM), despite careful attention to potential BPA inputs (diet, drinking water, vehicle, cages, bedding, and dust) and rigorous dosing solution certification and delivery. The source of this exposure could not be identified, but interpretation of the toxicological effects, observed only at the highest BPA doses, was not compromised. Internal exposures to BPA and EE2 aglycones were highest in young rats. When maximal serum concentrations from the two highest BPA doses and both EE2 doses were compared with concurrent levels of endogenous E2, the ERα binding equivalents were similar to or above those of endogenous E2 in male and female rats of all ages tested. Such evaluations of estrogenic internal dosimetry and comprehensive evaluation of contamination impact should aid in extrapolating risks from human BPA exposures.


Asunto(s)
Compuestos de Bencidrilo/toxicidad , Estradiol/fisiología , Etinilestradiol/toxicidad , Fenoles/toxicidad , Animales , Compuestos de Bencidrilo/farmacocinética , Cromatografía Líquida de Alta Presión , Relación Dosis-Respuesta a Droga , Femenino , Masculino , Fenoles/farmacocinética , Ratas , Ratas Sprague-Dawley , Espectrometría de Masas en Tándem
18.
Neurotoxicol Teratol ; 34(2): 253-62, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22289608

RESUMEN

Previous studies focusing on amphetamine (AMPH), methamphetamine (METH) and methylphenidate (MPH) neurotoxicity have almost exclusively been conducted in rodents during the light cycle, which is when most rodents sleep. There are virtually no studies that have simultaneously compared the effects of these three stimulants on body temperature and also determined serum stimulant levels during exposure. The present study compared the effects of MPH, AMPH and METH treatment on body temperature and neurotoxicity during the waking (dark) cycle of the rat. This was done to more effectively replicate stimulant exposure in waking humans and to evaluate the relative risks of the three stimulants when taken inappropriately or non-therapeutically (e.g., abuse). Four subcutaneous injections (4×), at 2 h intervals, were used to administer each dose of the stimulants tested. Several equimolar doses for the three stimulants were chosen to produce plasma levels ranging from 3 times the highest therapeutic levels (no effect on body temperature) to those only attained by accidental overdose or intentional abuse in humans. Either 4×2.0 mg/kg AMPH or 4×2.2 mg/kg METH administered during the waking cycle resulted in peak serum levels of between 1.5 and 2.5 µM (4 to 5 times over maximum therapeutic levels of METH and AMPH) and produced lethal hyperthermia, 70% striatal dopamine depletions, and neurodegeneration in the cortex and thalamus. These results show that METH and AMPH are equipotent at producing lethal hyperthermia and neurotoxicity in laboratory animals during the wake cycle. Administration of either 4×2.2 or 4×3.3 mg/kg METH during the sleep cycle produced lower peak body temperatures, minimal dopamine depletions and little neurodegeneration. These findings indicate that administration of the stimulant during the waking cycle compared to sleep cycle may significantly increase the potency of amphetamines to produce hyperthermia, neurotoxicity and lethality. In contrast, body temperature during the waking cycle was only significantly elevated by MPH at 4×22 mg/kg, and the serum levels producing this effect were 2-fold (approximately 4.5 µM) greater on a molar basis than hyperthermic doses of AMPH and METH. Thus, AMPH and METH were equipotent on a mg/kg body weight basis at producing hyperthermia and neurotoxicity while MPH on a mg/kg body weight basis was approximately 10-fold less potent than AMPH and METH. However, the 10-fold lower potency was in large part due to lower plasma levels produced by MPH compared to either AMPH or METH.


Asunto(s)
Anfetaminas/toxicidad , Fiebre/inducido químicamente , Metanfetamina/toxicidad , Metilfenidato/toxicidad , Fotoperiodo , Anfetaminas/administración & dosificación , Anfetaminas/sangre , Animales , Temperatura Corporal/efectos de los fármacos , Sistema Nervioso Central/efectos de los fármacos , Dopamina/metabolismo , Dopamina/farmacología , Masculino , Metanfetamina/administración & dosificación , Metanfetamina/sangre , Metilfenidato/administración & dosificación , Metilfenidato/sangre , Ratas , Ratas Sprague-Dawley , Serotonina/metabolismo , Serotonina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA