Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Ecol Evol ; 14(2): e10971, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38414568

RESUMEN

Due to multiple land-cover changes, forest herb populations residing in forest patches embedded in agricultural landscapes display different ages and, thus, experience differences in genetic exchange, mutation accumulation and genetic drift. The extent of divergence in present-day population genetic structure among these populations of different ages remains unclear, considering their diverse breeding systems and associated pollinators. Answering this question is essential to understand these species' persistence, maintenance of evolutionary potential and adaptability to changing environments. We applied a multi-landscape setup to compare the genetic structure of forest herb populations across forest patches of different ages (18-338 years). We studied the impact on three common slow-colonizer herb species with distinct breeding systems and associated pollinators: Polygonatum multiflorum (outcrossing, long-distance pollinators), Anemone nemorosa (outcrossing, short-distance pollinators) and Oxalis acetosella (mixed breeding). We aimed to assess if in general older populations displayed higher genetic diversity and lower differentiation than younger ones. We also anticipated that P. multiflorum would show the smallest while O. acetosella the largest difference, between old and young populations. We found that older populations had a higher observed heterozygosity (H o) but a similar level of allelic richness (A r) and expected heterozygosity (H e) as younger populations, except for A. nemorosa, which exhibited higher A r and H e in younger populations. As populations aged, their pairwise genetic differentiation measured by D PS decreased independent of species identity while the other two genetic differentiation measures showed either comparable levels between old and young populations (G" ST) or inconsistency among three species (cGD). The age difference of the two populations did not explain their genetic differentiation. Synthesis: We found restricted evidence that forest herb populations with different ages differ in their genetic structure, indicating that populations of different ages can reach a similar genetic structure within decades and thus persist in the long term after habitat disturbance. Despite their distinct breeding systems and associated pollinators, the three studied species exhibited partly similar genetic patterns, suggesting that their common characteristics, such as being slow colonizers or their ability to propagate vegetatively, are important in determining their long-term response to land-cover change.

2.
Nat Ecol Evol ; 8(5): 880-887, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38424266

RESUMEN

Forest biodiversity and ecosystem services are hitherto predominantly quantified in forest interiors, well away from edges. However, these edges also represent a substantial proportion of the global forest cover. Here we quantified plant biodiversity and ecosystem service indicators in 225 plots along forest edge-to-interior transects across Europe. We found strong trade-offs: phylogenetic diversity (evolutionary measure of biodiversity), proportion of forest specialists, decomposition and heatwave buffering increased towards the interior, whereas species richness, nectar production potential, stemwood biomass and tree regeneration decreased. These trade-offs were mainly driven by edge-to-interior structural differences. As fragmentation continues, recognizing the role of forest edges is crucial for integrating biodiversity and ecosystem service considerations into sustainable forest management and policy.


Asunto(s)
Biodiversidad , Bosques , Europa (Continente) , Conservación de los Recursos Naturales , Árboles , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...