Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Front Cell Infect Microbiol ; 14: 1367359, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38660488

RESUMEN

Cryptosporidium parvum is a common cause of a zoonotic disease and a main cause of diarrhea in newborns. Effective drugs or vaccines are still lacking. Oocyst is the infective form of the parasite; after its ingestion, the oocyst excysts and releases four sporozoites into the host intestine that rapidly attack the enterocytes. The membrane protein CpRom1 is a large rhomboid protease that is expressed by sporozoites and recognized as antigen by the host immune system. In this study, we observed the release of CpRom1 with extracellular vesicles (EVs) that was not previously described. To investigate this phenomenon, we isolated and resolved EVs from the excystation medium by differential ultracentrifugation. Fluorescence flow cytometry and transmission electron microscopy (TEM) experiments identified two types of sporozoite-derived vesicles: large extracellular vesicles (LEVs) and small extracellular vesicles (SEVs). Nanoparticle tracking analysis (NTA) revealed mode diameter of 181 nm for LEVs and 105 nm for SEVs, respectively. Immunodetection experiments proved the presence of CpRom1 and the Golgi protein CpGRASP in LEVs, while immune-electron microscopy trials demonstrated the localization of CpRom1 on the LEVs surface. TEM and scanning electron microscopy (SEM) showed that LEVs were generated by means of the budding of the outer membrane of sporozoites; conversely, the origin of SEVs remained uncertain. Distinct protein compositions were observed between LEVs and SEVs as evidenced by their corresponding electrophoretic profiles. Indeed, a dedicated proteomic analysis identified 5 and 16 proteins unique for LEVs and SEVs, respectively. Overall, 60 proteins were identified in the proteome of both types of vesicles and most of these proteins (48 in number) were already identified in the molecular cargo of extracellular vesicles from other organisms. Noteworthy, we identified 12 proteins unique to Cryptosporidium spp. and this last group included the immunodominant parasite antigen glycoprotein GP60, which is one of the most abundant proteins in both LEVs and SEVs.


Asunto(s)
Cryptosporidium parvum , Vesículas Extracelulares , Proteínas Protozoarias , Esporozoítos , Vesículas Extracelulares/metabolismo , Cryptosporidium parvum/metabolismo , Esporozoítos/metabolismo , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/análisis , Microscopía Electrónica de Transmisión , Animales , Criptosporidiosis/parasitología , Humanos , Proteoma/análisis , Proteómica , Citometría de Flujo
2.
4.
iScience ; 26(9): 107480, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37636075

RESUMEN

Prions are deadly infectious agents made of PrPSc, a misfolded variant of the cellular prion protein (PrPC) which self-propagates by inducing misfolding of native PrPC. PrPSc can adopt different pathogenic conformations (prion strains), which can be resistant to potential drugs, or acquire drug resistance, hampering the development of effective therapies. We identified Zn(II)-BnPyP, a tetracationic porphyrin that binds to distinct domains of native PrPC, eliciting a dual anti-prion effect. Zn(II)-BnPyP binding to a C-terminal pocket destabilizes the native PrPC fold, hindering conversion to PrPSc; Zn(II)-BnPyP binding to the flexible N-terminal tail disrupts N- to C-terminal interactions, triggering PrPC endocytosis and lysosomal degradation, thus reducing the substrate for PrPSc generation. Zn(II)-BnPyP inhibits propagation of different prion strains in vitro, in neuronal cells and organotypic brain cultures. These results identify a PrPC-targeting compound with an unprecedented dual mechanism of action which might be exploited to achieve anti-prion effects without engendering drug resistance.

5.
Biomolecules ; 13(5)2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-37238627

RESUMEN

Reactive astrogliosis is one of the pathological hallmarks of prion diseases. Recent studies highlighted the influence of several factors on the astrocyte phenotype in prion diseases, including the brain region involved, the genotype backgrounds of the host, and the prion strain. Elucidating the influence of prion strains on the astrocyte phenotype may provide crucial insights for developing therapeutic strategies. Here, we investigated the relationship between prion strains and astrocyte phenotype in six human- and animal-vole-adapted strains characterized by distinctive neuropathological features. In particular, we compared astrocyte morphology and astrocyte-associated PrPSc deposition among strains in the same brain region, the mediodorsal thalamic nucleus (MDTN). Astrogliosis was detected to some extent in the MDTN of all analyzed voles. However, we observed variability in the morphological appearance of astrocytes depending on the strain. Astrocytes displayed variability in thickness and length of cellular processes and cellular body size, suggesting strain-specific phenotypes of reactive astrocytes. Remarkably, four out of six strains displayed astrocyte-associated PrPSc deposition, which correlated with the size of astrocytes. Overall, these data show that the heterogeneous reactivity of astrocytes in prion diseases depends at least in part on the infecting prion strains and their specific interaction with astrocytes.


Asunto(s)
Enfermedades por Prión , Priones , Animales , Humanos , Priones/metabolismo , Astrocitos/metabolismo , Arvicolinae/genética , Arvicolinae/metabolismo , Gliosis/patología , Enfermedades por Prión/patología , Encéfalo/metabolismo
6.
J Biol Chem ; 299(2): 102823, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36565989

RESUMEN

The prion protein (PrPC) is subjected to several conserved endoproteolytic events producing bioactive fragments that are of increasing interest for their physiological functions and their implication in the pathogenesis of prion diseases and other neurodegenerative diseases. However, systematic and comprehensive investigations on the full spectrum of PrPC proteoforms have been hampered by the lack of methods able to identify all PrPC-derived proteoforms. Building on previous knowledge of PrPC endoproteolytic processing, we thus developed an optimized Western blot assay able to obtain the maximum information about PrPC constitutive processing and the relative abundance of PrPC proteoforms in a complex biological sample. This approach led to the concurrent identification of the whole spectrum of known endoproteolytic-derived PrPC proteoforms in brain homogenates, including C-terminal, N-terminal and, most importantly, shed PrPC-derived fragments. Endoproteolytic processing of PrPC was remarkably similar in the brain of widely used wild type and transgenic rodent models, with α-cleavage-derived C1 representing the most abundant proteoform and ADAM10-mediated shedding being an unexpectedly prominent proteolytic event. Interestingly, the relative amount of shed PrPC was higher in WT mice than in most other models. Our results indicate that constitutive endoproteolytic processing of PrPC is not affected by PrPC overexpression or host factors other than PrPC but can be impacted by PrPC primary structure. Finally, this method represents a crucial step in gaining insight into pathophysiological roles, biomarker suitability, and therapeutic potential of shed PrPC and for a comprehensive appraisal of PrPC proteoforms in therapies, drug screening, or in the progression of neurodegenerative diseases.


Asunto(s)
Western Blotting , Fragmentos de Péptidos , Proteínas PrPC , Proteolisis , Animales , Ratones , Western Blotting/métodos , Enfermedades por Prión/metabolismo , Enfermedades por Prión/patología , Enfermedades por Prión/fisiopatología , Proteínas PrPC/química , Proteínas PrPC/genética , Proteínas PrPC/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Encéfalo/metabolismo
7.
PLoS Pathog ; 18(6): e1010646, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35731839

RESUMEN

Prions are infectious agents that replicate through the autocatalytic misfolding of the cellular prion protein (PrPC) into infectious aggregates (PrPSc) causing fatal neurodegenerative diseases in humans and animals. Prions exist as strains, which are encoded by conformational variants of PrPSc. The transmissibility of prions depends on the PrPC sequence of the recipient host and on the incoming prion strain, so that some animal prion strains are more contagious than others or are transmissible to new species, including humans. Nor98/atypical scrapie (AS) is a prion disease of sheep and goats reported in several countries worldwide. At variance with classical scrapie (CS), AS is considered poorly contagious and is supposed to be spontaneous in origin. The zoonotic potential of AS, its strain variability and the relationships with the more contagious CS strains remain largely unknown. We characterized AS isolates from sheep and goats by transmission in ovinised transgenic mice (tg338) and in two genetic lines of bank voles, carrying either methionine (BvM) or isoleucine (BvI) at PrP residue 109. All AS isolates induced the same pathological phenotype in tg338 mice, thus proving that they encoded the same strain, irrespective of their geographical origin or source species. In bank voles, we found that the M109I polymorphism dictates the susceptibility to AS. BvI were susceptible and faithfully reproduced the AS strain, while the transmission in BvM was highly inefficient and was characterized by a conformational change towards a CS-like prion strain. Sub-passaging experiments revealed that the main strain component of AS is accompanied by minor CS-like strain components, which can be positively selected during replication in both AS-resistant or AS-susceptible animals. These findings add new clues for a better comprehension of strain selection dynamics in prion infections and have wider implications for understanding the origin of contagious prion strains, such as CS.


Asunto(s)
Priones , Scrapie , Aminoácidos , Animales , Arvicolinae/genética , Arvicolinae/metabolismo , Susceptibilidad a Enfermedades , Cabras/metabolismo , Ratones , Ratones Transgénicos , Tolerancia , Proteínas Priónicas/genética , Priones/metabolismo , Scrapie/genética , Ovinos
8.
J Biol Chem ; 298(4): 101770, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35271850

RESUMEN

The cellular prion protein (PrPC) has a C-terminal globular domain and a disordered N-terminal region encompassing five octarepeats (ORs). Encounters between Cu(II) ions and four OR sites produce interchangeable binding geometries; however, the significance of Cu(II) binding to ORs in different combinations is unclear. To understand the impact of specific binding geometries, OR variants were designed that interact with multiple or single Cu(II) ions in specific locked coordinations. Unexpectedly, we found that one mutant produced detergent-insoluble, protease-resistant species in cells in the absence of exposure to the infectious prion protein isoform, scrapie-associated prion protein (PrPSc). Formation of these assemblies, visible as puncta, was reversible and dependent upon medium formulation. Cobalamin (Cbl), a dietary cofactor containing a corrin ring that coordinates a Co3+ ion, was identified as a key medium component, and its effect was validated by reconstitution experiments. Although we failed to find evidence that Cbl interacts with Cu-binding OR regions, we instead noted interactions of Cbl with the PrPC C-terminal domain. We found that some interactions occurred at a binding site of planar tetrapyrrole compounds on the isolated globular domain, but others did not, and N-terminal sequences additionally had a marked effect on their presence and position. Our studies define a conditional effect of Cbl wherein a mutant OR region can act in cis to destabilize a globular domain with a wild type sequence. The unexpected intersection between the properties of PrPSc's disordered region, Cbl, and conformational remodeling events may have implications for understanding sporadic prion disease that does not involve exposure to PrPSc.


Asunto(s)
Enfermedades por Prión , Proteínas Priónicas , Priones , Animales , Cobre/metabolismo , Peso Molecular , Mutación , Enfermedades por Prión/genética , Enfermedades por Prión/fisiopatología , Proteínas Priónicas/química , Proteínas Priónicas/genética , Priones/genética , Priones/metabolismo , Priones/patogenicidad , Unión Proteica/genética , Vitamina B 12/metabolismo
9.
Proc Natl Acad Sci U S A ; 117(49): 31417-31426, 2020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33229531

RESUMEN

Chronic wasting disease (CWD) is a relentless epidemic disorder caused by infectious prions that threatens the survival of cervid populations and raises increasing public health concerns in North America. In Europe, CWD was detected for the first time in wild Norwegian reindeer (Rangifer tarandus) and moose (Alces alces) in 2016. In this study, we aimed at comparing the strain properties of CWD prions derived from different cervid species in Norway and North America. Using a classical strain typing approach involving transmission and adaptation to bank voles (Myodes glareolus), we found that prions causing CWD in Norway induced incubation times, neuropathology, regional deposition of misfolded prion protein aggregates in the brain, and size of their protease-resistant core, different from those that characterize North American CWD. These findings show that CWD prion strains affecting Norwegian cervids are distinct from those found in North America, implying that the highly contagious North American CWD prions are not the proximate cause of the newly discovered Norwegian CWD cases. In addition, Norwegian CWD isolates showed an unexpected strain variability, with reindeer and moose being caused by different CWD strains. Our findings shed light on the origin of emergent European CWD, have significant implications for understanding the nature and the ecology of CWD in Europe, and highlight the need to assess the zoonotic potential of the new CWD strains detected in Europe.


Asunto(s)
Arvicolinae/fisiología , Priones/metabolismo , Enfermedad Debilitante Crónica/epidemiología , Adaptación Fisiológica , Animales , Encéfalo/patología , Degeneración Nerviosa/complicaciones , Degeneración Nerviosa/patología , América del Norte/epidemiología , Noruega/epidemiología , Fenotipo , Especificidad de la Especie , Enfermedad Debilitante Crónica/complicaciones , Enfermedad Debilitante Crónica/transmisión
10.
Brain ; 143(5): 1512-1524, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32303068

RESUMEN

Prions are transmissible agents causing lethal neurodegenerative diseases that are composed of aggregates of misfolded cellular prion protein (PrPSc). Despite non-fibrillar oligomers having been proposed as the most infectious prion particles, prions purified from diseased brains usually consist of large and fibrillar PrPSc aggregates, whose protease-resistant core (PrPres) encompasses the whole C-terminus of PrP. In contrast, PrPSc from Gerstmann-Sträussler-Scheinker disease associated with alanine to valine substitution at position 117 (GSS-A117V) is characterized by a small protease-resistant core, which is devoid of the C-terminus. We thus aimed to investigate the role of this unusual PrPSc in terms of infectivity, strain characteristics, and structural features. We found, by titration in bank voles, that the infectivity of GSS-A117V is extremely high (109.3 ID50 U/g) and is resistant to treatment with proteinase K (109.0 ID50 U/g). We then purified the proteinase K-resistant GSS-A117V prions and determined the amount of infectivity and PrPres in the different fractions, alongside the morphological characteristics of purified PrPres aggregates by electron microscopy. Purified pellet fractions from GSS-A117V contained the expected N- and C-terminally cleaved 7 kDa PrPres, although the yield of PrPres was low. We found that this low yield depended on the low density/small size of GSS-A117V PrPres, as it was mainly retained in the last supernatant fraction. All fractions were highly infectious, thus confirming the infectious nature of the 7 kDa PrPres, with infectivity levels that directly correlated with the PrPres amount detected. Finally, electron microscopy analysis of these fractions showed no presence of amyloid fibrils, but only very small and indistinct, non-fibrillar PrPresparticles were detected and confirmed to contain PrP via immunogold labelling. Our study demonstrates that purified aggregates of 7 kDa PrPres, spanning residues ∼90-150, are highly infectious oligomers that encode the biochemical and biological strain features of the original sample. Overall, the autocatalytic behaviour of the prion oligomers reveals their role in the propagation of neurodegeneration in patients with Gerstmann-Sträussler-Scheinker disease and implies that the C-terminus of PrPSc is dispensable for infectivity and strain features for this prion strain, uncovering the central PrP domain as the minimal molecular component able to encode infectious prions. These findings are consistent with the hypothesis that non-fibrillar prion particles are highly efficient propagators of disease and provide new molecular and morphological constraints on the structure of infectious prions.


Asunto(s)
Enfermedad de Gerstmann-Straussler-Scheinker/transmisión , Proteínas PrPSc/química , Proteínas PrPSc/aislamiento & purificación , Proteínas PrPSc/patogenicidad , Animales , Arvicolinae , Humanos
11.
PLoS Pathog ; 15(10): e1008117, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31644574

RESUMEN

The resolution of the three-dimensional structure of infectious prions at the atomic level is pivotal to understand the pathobiology of Transmissible Spongiform Encephalopathies (TSE), but has been long hindered due to certain particularities of these proteinaceous pathogens. Difficulties related to their purification from brain homogenates of disease-affected animals were resolved almost a decade ago by the development of in vitro recombinant prion propagation systems giving rise to highly infectious recombinant prions. However, lack of knowledge about the molecular mechanisms of the misfolding event and the complexity of systems such as the Protein Misfolding Cyclic Amplification (PMCA), have limited generating the large amounts of homogeneous recombinant prion preparations required for high-resolution techniques such as solid state Nuclear Magnetic Resonance (ssNMR) imaging. Herein, we present a novel recombinant prion propagation system based on PMCA that substitutes sonication with shaking thereby allowing the production of unprecedented amounts of multi-labeled, infectious recombinant prions. The use of specific cofactors, such as dextran sulfate, limit the structural heterogeneity of the in vitro propagated prions and makes possible, for the first time, the generation of infectious and likely homogeneous samples in sufficient quantities for studies with high-resolution structural techniques as demonstrated by the preliminary ssNMR spectrum presented here. Overall, we consider that this new method named Protein Misfolding Shaking Amplification (PMSA), opens new avenues to finally elucidate the three-dimensional structure of infectious prions.


Asunto(s)
Resonancia Magnética Nuclear Biomolecular/métodos , Proteínas Priónicas/metabolismo , Priones/metabolismo , Animales , Arvicolinae , Sistema Nervioso Central/patología , Sulfato de Dextran/farmacología , Modelos Animales de Enfermedad , Ratones Transgénicos , Enfermedades por Prión/patología , Estructura Terciaria de Proteína , Deficiencias en la Proteostasis/patología
12.
J Health Psychol ; 24(1): 65-78, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-28810447

RESUMEN

Healthcare professionals' psychological involvement in perinatal loss is a largely overlooked subject by healthcare systems, scientific research and prevention policies. A systematic scientific review has been carried out about emotional experiences, attributed meanings and needs conveyed by healthcare professionals in relation to perinatal loss. We identified 213 studies between 1985 and 2015, 20 of which were included in the present study for qualitative analysis. Our results point out the need for a targeted vocational training in perinatal loss, enabling healthcare professionals to achieve a proper management of their own internal states.


Asunto(s)
Aborto Espontáneo/psicología , Personal de Salud/psicología , Servicios de Salud Materna , Muerte Perinatal , Mortinato/psicología , Adulto , Femenino , Humanos , Recién Nacido , Embarazo
13.
Emerg Infect Dis ; 25(1): 73-81, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30561322

RESUMEN

Variably protease-sensitive prionopathy (VPSPr), a recently described human sporadic prion disease, features a protease-resistant, disease-related prion protein (resPrPD) displaying 5 fragments reminiscent of Gerstmann-Sträussler-Scheinker disease. Experimental VPSPr transmission to human PrP-expressing transgenic mice, although replication of the VPSPr resPrPD profile succeeded, has been incomplete because of second passage failure. We bioassayed VPSPr in bank voles, which are susceptible to human prion strains. Transmission was complete; first-passage attack rates were 5%-35%, and second-passage rates reached 100% and survival times were 50% shorter. We observed 3 distinct phenotypes and resPrPD profiles; 2 imitated sporadic Creutzfeldt-Jakob disease resPrPD, and 1 resembled Gerstmann-Sträussler-Scheinker disease resPrPD. The first 2 phenotypes may be related to the presence of minor PrPD components in VPSPr. Full VPSPr transmission confirms permissiveness of bank voles to human prions and suggests that bank vole PrP may efficiently reveal an underrepresented native strain but does not replicate the complex VPSPr PrPD profile.


Asunto(s)
Enfermedades por Prión/transmisión , Priones/metabolismo , Animales , Arvicolinae , Encéfalo/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Genotipo , Enfermedad de Gerstmann-Straussler-Scheinker/patología , Enfermedad de Gerstmann-Straussler-Scheinker/transmisión , Humanos , Ratones , Ratones Transgénicos , Péptido Hidrolasas/metabolismo , Fenotipo , Enfermedades por Prión/patología , Priones/genética , Isoformas de Proteínas
14.
Emerg Infect Dis ; 24(12): 2210-2218, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30457526

RESUMEN

Chronic wasting disease (CWD) persists in cervid populations of North America and in 2016 was detected for the first time in Europe in a wild reindeer in Norway. We report the detection of CWD in 3 moose (Alces alces) in Norway, identified through a large scale surveillance program. The cases occurred in 13-14-year-old female moose, and we detected an abnormal form of prion protein (PrPSc) in the brain but not in lymphoid tissues. Immunohistochemistry revealed that the moose shared the same neuropathologic phenotype, characterized by mostly intraneuronal deposition of PrPSc. This pattern differed from that observed in reindeer and has not been previously reported in CWD-infected cervids. Moreover, Western blot revealed a PrPSc type distinguishable from previous CWD cases and from known ruminant prion diseases in Europe, with the possible exception of sheep CH1641. These findings suggest that these cases in moose represent a novel type of CWD.


Asunto(s)
Enfermedad Debilitante Crónica/diagnóstico , Enfermedad Debilitante Crónica/epidemiología , Animales , Animales Salvajes , Encéfalo , Canadá/epidemiología , Europa (Continente) , Femenino , Genotipo , Inmunohistoquímica , Noruega , Priones/genética , Vigilancia en Salud Pública , Reno , Ovinos
15.
Acta Neuropathol ; 135(2): 179-199, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29094186

RESUMEN

Prion diseases are caused by a misfolding of the cellular prion protein (PrP) to a pathogenic isoform named PrPSc. Prions exist as strains, which are characterized by specific pathological and biochemical properties likely encoded in the three-dimensional structure of PrPSc. However, whether cofactors determine these different PrPSc conformations and how this relates to their specific biological properties is largely unknown. To understand how different cofactors modulate prion strain generation and selection, Protein Misfolding Cyclic Amplification was used to create a diversity of infectious recombinant prion strains by propagation in the presence of brain homogenate. Brain homogenate is known to contain these mentioned cofactors, whose identity is only partially known, and which facilitate conversion of PrPC to PrPSc. We thus obtained a mix of distinguishable infectious prion strains. Subsequently, we replaced brain homogenate, by different polyanionic cofactors that were able to drive the evolution of mixed prion populations toward specific strains. Thus, our results show that a variety of infectious recombinant prions can be generated in vitro and that their specific type of conformation, i.e., the strain, is dependent on the cofactors available during the propagation process. These observations have significant implications for understanding the pathogenesis of prion diseases and their ability to replicate in different tissues and hosts. Importantly, these considerations might apply to other neurodegenerative diseases for which different conformations of misfolded proteins have been described.


Asunto(s)
Encéfalo/metabolismo , Enfermedades por Prión/metabolismo , Proteínas Priónicas/metabolismo , Animales , Arvicolinae , Encéfalo/patología , Escherichia coli , Ratones Transgénicos , Polimorfismo Genético , Proteínas Priónicas/genética , Pliegue de Proteína , Proteínas Recombinantes/metabolismo
16.
PLoS One ; 12(8): e0182589, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28787011

RESUMEN

Prion diseases are neurodegenerative conditions characterized by the conformational conversion of the cellular prion protein (PrPC), an endogenous membrane glycoprotein of uncertain function, into PrPSc, a pathological isoform that replicates by imposing its abnormal folding onto PrPC molecules. A great deal of evidence supports the notion that PrPC plays at least two roles in prion diseases, by acting as a substrate for PrPSc replication, and as a mediator of its toxicity. This conclusion was recently supported by data suggesting that PrPC may transduce neurotoxic signals elicited by other disease-associated protein aggregates. Thus, PrPC may represent a convenient pharmacological target for prion diseases, and possibly other neurodegenerative conditions. Here, we sought to characterize the activity of chlorpromazine (CPZ), an antipsychotic previously shown to inhibit prion replication by directly binding to PrPC. By employing biochemical and biophysical techniques, we provide direct experimental evidence indicating that CPZ does not bind PrPC at biologically relevant concentrations. Instead, the compound exerts anti-prion effects by inducing the relocalization of PrPC from the plasma membrane. Consistent with these findings, CPZ also inhibits the cytotoxic effects delivered by a PrP mutant. Interestingly, we found that the different pharmacological effects of CPZ could be mimicked by two inhibitors of the GTPase activity of dynamins, a class of proteins involved in the scission of newly formed membrane vesicles, and recently reported as potential pharmacological targets of CPZ. Collectively, our results redefine the mechanism by which CPZ exerts anti-prion effects, and support a primary role for dynamins in the membrane recycling of PrPC, as well as in the propagation of infectious prions.


Asunto(s)
Antipsicóticos/farmacología , Clorpromazina/farmacología , Proteínas Priónicas/metabolismo , Antipsicóticos/metabolismo , Línea Celular , Clorpromazina/metabolismo , Dinaminas/antagonistas & inhibidores , Humanos , Ligandos , Mutación , Proteínas Priónicas/genética , Transporte de Proteínas/efectos de los fármacos
17.
PLoS Pathog ; 12(11): e1006016, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27880822

RESUMEN

It is widely known that prion strains can mutate in response to modification of the replication environment and we have recently reported that prion mutations can occur in vitro during amplification of vole-adapted prions by Protein Misfolding Cyclic Amplification on bank vole substrate (bvPMCA). Here we exploited the high efficiency of prion replication by bvPMCA to study the in vitro propagation of natural scrapie isolates. Although in vitro vole-adapted PrPSc conformers were usually similar to the sheep counterpart, we repeatedly isolated a PrPSc mutant exclusively when starting from extremely diluted seeds of a single sheep isolate. The mutant and faithful PrPSc conformers showed to be efficiently autocatalytic in vitro and were characterized by different PrP protease resistant cores, spanning aa ∼155-231 and ∼80-231 respectively, and by different conformational stabilities. The two conformers could thus be seen as different bona fide PrPSc types, putatively accounting for prion populations with different biological properties. Indeed, once inoculated in bank vole the faithful conformer was competent for in vivo replication while the mutant was unable to infect voles, de facto behaving like a defective prion mutant. Overall, our findings confirm that prions can adapt and evolve in the new replication environments and that the starting population size can affect their evolutionary landscape, at least in vitro. Furthermore, we report the first example of "authentic" defective prion mutant, composed of brain-derived PrPC and originating from a natural scrapie isolate. Our results clearly indicate that the defective mutant lacks of some structural characteristics, that presumably involve the central region ∼90-155, critical for infectivity but not for in vitro replication. Finally, we propose a molecular mechanism able to account for the discordant in vitro and in vivo behavior, suggesting possible new paths for investigating the molecular bases of prion infectivity.


Asunto(s)
Proteínas PrPSc/química , Proteínas PrPSc/metabolismo , Scrapie/metabolismo , Animales , Arvicolinae , Western Blotting , Mutación , Proteínas PrPSc/aislamiento & purificación , Conformación Proteica , Ovinos
18.
Sci Rep ; 6: 23180, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26976106

RESUMEN

Prion diseases are rare neurodegenerative conditions associated with the conformational conversion of the cellular prion protein (PrP(C)) into PrP(Sc), a self-replicating isoform (prion) that accumulates in the central nervous system of affected individuals. The structure of PrP(Sc) is poorly defined, and likely to be heterogeneous, as suggested by the existence of different prion strains. The latter represents a relevant problem for therapy in prion diseases, as some potent anti-prion compounds have shown strain-specificity. Designing therapeutics that target PrP(C) may provide an opportunity to overcome these problems. PrP(C) ligands may theoretically inhibit the replication of multiple prion strains, by acting on the common substrate of any prion replication reaction. Here, we characterized the properties of a cationic tetrapyrrole [Fe(III)-TMPyP], which was previously shown to bind PrP(C), and inhibit the replication of a mouse prion strain. We report that the compound is active against multiple prion strains in vitro and in cells. Interestingly, we also find that Fe(III)-TMPyP inhibits several PrP(C)-related toxic activities, including the channel-forming ability of a PrP mutant, and the PrP(C)-dependent synaptotoxicity of amyloid-ß (Aß) oligomers, which are associated with Alzheimer's Disease. These results demonstrate that molecules binding to PrP(C) may produce a dual effect of blocking prion replication and inhibiting PrP(C)-mediated toxicity.


Asunto(s)
Metaloporfirinas/química , Proteínas PrPC/metabolismo , Proteínas Priónicas/antagonistas & inhibidores , Tetrapirroles/química , Péptidos beta-Amiloides/metabolismo , Animales , Sitios de Unión , Línea Celular Tumoral , Células HEK293 , Humanos , Metaloporfirinas/farmacología , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación , Porfirinas , Proteínas PrPC/química , Proteínas PrPC/genética , Proteínas Priónicas/química , Unión Proteica , Proteínas Recombinantes/metabolismo , Tetrapirroles/farmacología
19.
Prion ; 8(1): 154-60, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24618479

RESUMEN

Prions exist as strains, which are thought to reflect PrP(Sc) conformational variants. Prion strains can mutate and it has been proposed that prion mutability depends on an intrinsic heterogeneity of prion populations that would behave as quasispecies. We investigated in vitro prion mutability of 2 strains, by following PrP(Sc) variations of populations serially propagated in PMCA under constant environmental pressure. Each strain was propagated either at low dilution of the seed, i.e., by large population passages, or at limiting dilution, mimicking bottleneck events. In both strains, PrP(Sc) conformational variants were identified only after large population passages, while repeated bottleneck events caused a rapid decline in amplification rates. These findings support the view that mutability is an intrinsic property of prions.


Asunto(s)
Mutación , Priones/fisiología , Animales , Arvicolinae , Western Blotting , Técnicas In Vitro , Priones/genética
20.
PLoS Negl Trop Dis ; 6(8): e1776, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22953009

RESUMEN

The flagellated protozoan Giardia duodenalis is a common gastrointestinal parasite of mammals, including humans. Molecular characterizations have shown the existence of eight genetic groups (or assemblages) in the G. duodenalis species complex. Human infections are caused by assemblages A and B, which infect other mammals as well. Whether transmission routes, animal reservoirs and associations with specific symptoms differ for assemblage A and assemblage B is not clear. Furthermore, the occurrence and clinical significance of mixed (A+B) infections is also poorly understood. To date, the majority of PCR assays has been developed to identify all G. duodenalis assemblages based on the use of primers that bind to conserved regions, yet a reliable identification of specific assemblages is better achieved by ad hoc methods. The aim of this work was to design simple PCR assays that, based on the use of assemblage-specific primers, produce diagnostic bands of different lengths for assemblage A and B. We first generated novel sequence information from assemblage B, identified homologous sequences in the assemblage A genome, and designed primers at six independent loci. Experiments performed on DNA extracted from axenic cultures showed that two of the six assays can detect the equivalent of a single cyst and are not negatively influenced by disproportions between DNA of each assemblage, at least up to a 9:1 ratio. Further experiments on DNAs extracted from feces showed that the two assays can detect both assemblages in single tube reactions with excellent reliability. Finally, the robustness of these assays was demonstrated by testing a large collection of human isolates previously typed by multi-locus genotyping.


Asunto(s)
Heces/parasitología , Giardia lamblia/aislamiento & purificación , Giardiasis/diagnóstico , Giardiasis/parasitología , Técnicas de Diagnóstico Molecular/métodos , Parasitología/métodos , Reacción en Cadena de la Polimerasa/métodos , Animales , Niño , Preescolar , Cartilla de ADN/genética , ADN Protozoario/química , ADN Protozoario/genética , Giardia lamblia/genética , Humanos , Datos de Secuencia Molecular , Sensibilidad y Especificidad , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA