Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Front Vet Sci ; 10: 1188633, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37929279

RESUMEN

Introduction: Because of their importance as companion animals or as racehorses, horses can be treated with various drugs. Although it is known that drug withdrawal times can vary for each horse, pharmacogenetics for these animals has not been adequately studied and requires further development. Since CYP2D6 is responsible for the metabolism of 25-30% of drugs in humans, including some used to treat horses, a study of the CYP2D family in horses was conducted to define its genetic structure as well as its expression pattern in the liver. Methods: Genomic DNA extracted from venous blood and mRNA from fresh liver tissue were amplified and sequenced to analyze the genomic structure, genotype, and expression of the various enzymes that are part of the equine orthologous family for CYP2D6. Results: Amplification and sequencing of the gDNA of CYP2D50, the major CYP2D6 orthologue identified in previous studies, revealed a novel putative genomic structure for this gene compared with that reported from the EquCab3.0 assembly, including the formation of a hybrid structure similar to what happens in human CYP2D6. At the mRNA level, transcripts from six different members of the equine CYP2D family were detected in horse liver. In addition, genotyping of CYP2D50 and CYP2D82 revealed the presence of several polymorphisms, six of which result in novel, nonsynonymous amino acid changes for each of the two genes. Discussion: This study aimed to elucidate the pharmacogenetic analysis of the CYP2D family in horses and resulted in the identification of a novel gene structure for CYP2D50, the expression of six different members of the CYP2D family in horse liver, and several novel polymorphisms for CYP2D50 and CYP2D82.

2.
Clin Pharmacol Ther ; 114(6): 1220-1237, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37669183

RESUMEN

The Pharmacogene Variation Consortium (PharmVar) provides nomenclature for the highly polymorphic human CYP2D6 gene locus and a comprehensive summary of structural variation. CYP2D6 contributes to the metabolism of numerous drugs and, thus, genetic variation in its gene impacts drug efficacy and safety. To accurately predict a patient's CYP2D6 phenotype, testing must include structural variants including gene deletions, duplications, hybrid genes, and combinations thereof. This tutorial offers a comprehensive overview of CYP2D6 structural variation, terms, and definitions, a review of methods suitable for their detection and characterization, and practical examples to address the lack of standards to describe CYP2D6 structural variants or any other pharmacogene. This PharmVar tutorial offers practical guidance on how to detect the many, often complex, structural variants, as well as recommends terms and definitions for clinical and research reporting. Uniform reporting is not only essential for electronic health record-keeping but also for accurate translation of a patient's genotype into phenotype which is typically utilized to guide drug therapy.


Asunto(s)
Citocromo P-450 CYP2D6 , Humanos , Citocromo P-450 CYP2D6/genética , Citocromo P-450 CYP2D6/metabolismo , Genotipo , Fenotipo , Alelos
3.
J Allergy Clin Immunol ; 152(6): 1550-1568, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37652141

RESUMEN

BACKGROUND: Basal zone hyperplasia (BZH) and dilated intercellular spaces (DISs) are thought to contribute to the clinical manifestations of eosinophilic esophagitis (EoE); however, the molecular pathways that drive BZH remain largely unexplored. OBJECTIVE: We sought to define the role of IL-13-induced transcriptional programs in esophageal epithelial proliferation in EoE. METHODS: We performed RNA sequencing, bioinformatics, Western blot, reverse transcriptase quantitative PCR, and histologic analyses on esophageal biopsies from healthy control and patients with EoE, primary esophageal cells derived from patients with EoE, and IL-13-stimulated esophageal epithelial keratinocytes grown at the air-liquid interface (EPC2-ALI). Genetic (shRNA) and pharmacologic (proteolysis-targeting chimera degrader) approaches and in vivo model of IL-13-induced esophageal epithelial remodeling (Krt5-rtTA x tetO-IL-13Tg) were used to define the role of signal transducer and activator of transcription 3 (STAT3) and STAT6 and secreted frizzled-related protein 1 (SFRP1) in esophageal epithelial proliferation. RESULTS: RNA-sequencing analysis of esophageal biopsies (healthy control vs EoE) and EPC2-ALI revealed 82 common differentially expressed genes that were enriched for putative STAT3 target genes. In vitro and in vivo analyses revealed a link between IL-13-induced STAT3 and STAT6 phosphorylation, SFRP1 mRNA expression, and esophageal epithelial proliferation. In vitro studies showed that IL-13-induced esophageal epithelial proliferation was STAT3-dependent and regulated by the STAT3 target SFRP1. SFRP1 mRNA is increased in esophageal biopsies from patients with active EoE compared with healthy controls or patients in remission and identifies an esophageal suprabasal epithelial cell subpopulation that uniquely expressed the core EoE proinflammatory transcriptome genes (CCL26, ALOX15, CAPN14, ANO1, and TNFAIP6). CONCLUSIONS: These studies identify SFRP1 as a key regulator of IL-13-induced and STAT3-dependent esophageal proliferation and BZH in EoE and link SFRP1+ esophageal epithelial cells with the proinflammatory and epithelial remodeling response in EoE.


Asunto(s)
Esofagitis Eosinofílica , Humanos , Esofagitis Eosinofílica/patología , Interleucina-13/metabolismo , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Células Epiteliales/metabolismo , ARN Mensajero/metabolismo , Proliferación Celular
4.
Front Cell Infect Microbiol ; 12: 960065, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36405967

RESUMEN

Known SARS-CoV-2 variants of concern (VOCs) can be detected and differentiated using an RT-PCR-based genotyping approach, which offers quicker time to result, lower cost, higher flexibility, and use of the same laboratory instrumentation for detection of SARS-CoV-2 when compared with whole genome sequencing (WGS). In the current study, we demonstrate how we applied a genotyping approach for identification of all VOCs and that such technique can offer comparable performance to WGS for identification of known SARS-CoV-2 VOCs, including more recent strains, Omicron BA.1 and BA.2.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , SARS-CoV-2/genética , Genotipo , Secuenciación Completa del Genoma
5.
Cell Mol Gastroenterol Hepatol ; 12(4): 1479-1502, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34242819

RESUMEN

BACKGROUND & AIMS: CD4+ T cells are regulated by activating and inhibitory cues, and dysregulation of these proper regulatory inputs predisposes these cells to aberrant inflammation and exacerbation of disease. We investigated the role of the inhibitory receptor paired immunoglobulin-like receptor B (PIR-B) in the regulation of the CD4+ T-cell inflammatory response and exacerbation of the colitic phenotype. METHODS: We used Il10-/- spontaneous and CD4+CD45RBhi T-cell transfer models of colitis with PIR-B-deficient (Pirb-/-) mice. Flow cytometry, Western blot, and RNA sequencing analysis was performed on wild-type and Pirb-/- CD4+ T cells. In silico analyses were performed on RNA sequencing data set of ileal biopsy samples from pediatric CD and non-inflammatory bowel disease patients and sorted human memory CD4+ T cells. RESULTS: We identified PIR-B expression on memory CD4+ interleukin (IL)17a+ cells. We show that PIR-B regulates CD4+ T-helper 17 cell (Th17)-dependent chronic intestinal inflammatory responses and the development of colitis. Mechanistically, we show that the PIR-B- Src-homology region 2 domain-containing phosphatase-1/2 axis tempers mammalian target of rapamycin complex 1 signaling and mammalian target of rapamycin complex 1-dependent caspase-3/7 apoptosis, resulting in CD4+ IL17a+ cell survival. In silico analyses showed enrichment of transcriptional signatures for Th17 cells (RORC, RORA, and IL17A) and tissue resident memory (HOBIT, IL7R, and BLIMP1) networks in PIR-B+ murine CD4+ T cells and human CD4+ T cells that express the human homologue leukocyte immunoglobulin-like receptor subfamily B member 3 (LILRB3). High levels of LILRB3 expression were associated strongly with mucosal injury and a proinflammatory Th17 signature, and this signature was restricted to a treatment-naïve, severe pediatric CD population. CONCLUSIONS: Our findings show an intrinsic role for PIR-B/LILRB3 in the regulation of CD4+ IL17a+ T-cell pathogenic memory responses.


Asunto(s)
Regulación de la Expresión Génica , Inmunomodulación , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Receptores Inmunológicos/genética , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Animales , Biomarcadores , Supervivencia Celular/genética , Supervivencia Celular/inmunología , Colitis/etiología , Colitis/metabolismo , Colitis/patología , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Perfilación de la Expresión Génica , Inmunohistoquímica , Memoria Inmunológica , Inmunofenotipificación , Enfermedades Inflamatorias del Intestino/etiología , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedades Inflamatorias del Intestino/patología , Interleucina-10/genética , Interleucina-10/metabolismo , Interleucina-17/metabolismo , Mucosa Intestinal/patología , Ratones , Ratones Noqueados , Receptores Inmunológicos/metabolismo , Transducción de Señal
6.
J Allergy Clin Immunol ; 145(1): 239-254.e2, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31647967

RESUMEN

BACKGROUND: The pathology of eosinophilic esophagitis (EoE) is characterized by eosinophil-rich inflammation, basal zone hyperplasia (BZH), and dilated intercellular spaces, and the underlying processes that drive the pathologic manifestations of the disease remain largely unexplored. OBJECTIVE: We sought to investigate the involvement of the calcium-activated chloride channel anoctamin 1 (ANO1) in esophageal proliferation and the histopathologic features of EoE. METHODS: We examined mRNA and protein expression of ANO1 in esophageal biopsy samples from patients with EoE and in mice with EoE. We performed molecular and cellular analyses and ion transport assays on an in vitro esophageal epithelial 3-dimensional model system (EPC2-ALI) and murine models of EoE to define the relationship between expression and function of ANO1 and esophageal epithelial proliferation in patients with EoE. RESULTS: We observed increased ANO1 expression in esophageal biopsy samples from patients with EoE and in mice with EoE. ANO1 was expressed within the esophageal basal zone, and expression correlated positively with disease severity (eosinophils/high-power field) and BZH. Using an in vitro esophageal epithelial 3-dimensional model system revealed that ANO1 undergoes chromatin modification and rapid upregulation of expression after IL-13 stimulation, that ANO1 is the primary apical IL-13-induced Cl- transport mechanism within the esophageal epithelium, and that loss of ANO1-dependent Cl- transport abrogated esophageal epithelial proliferation. Mechanistically, ANO1-dependent regulation of basal cell proliferation was associated with modulation of TP63 expression and phosphorylated cyclin-dependent kinase 2 levels. CONCLUSIONS: These data identify a functional role for ANO1 in esophageal cell proliferation and BZH in patients with EoE and provide a rationale for pharmacologic intervention of ANO1 function in patients with EoE.


Asunto(s)
Anoctamina-1/inmunología , Esofagitis Eosinofílica/inmunología , Células Epiteliales/inmunología , Esófago/inmunología , Regulación de la Expresión Génica , Proteínas de Neoplasias/inmunología , Animales , Línea Celular , Modelos Animales de Enfermedad , Esofagitis Eosinofílica/patología , Células Epiteliales/patología , Esófago/patología , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C
7.
J Allergy Clin Immunol ; 144(4): 1058-1073.e3, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31175877

RESUMEN

BACKGROUND: Food-induced anaphylaxis (FIA) is an IgE-dependent immune response that can affect multiple organs and lead to life-threatening complications. The processes by which food allergens cross the mucosal surface and are delivered to the subepithelial immune compartment to promote the clinical manifestations associated with food-triggered anaphylaxis are largely unexplored. OBJECTIVE: We sought to define the processes involved in the translocation of food allergens across the mucosal epithelial surface to the subepithelial immune compartment in FIA. METHODS: Two-photon confocal and immunofluorescence microscopy was used to visualize and trace food allergen passage in a murine model of FIA. A human colon cancer cell line, RNA silencing, and pharmacologic approaches were used to identify the molecular regulation of intestinal epithelial allergen uptake and translocation. Human intestinal organoid transplants were used to demonstrate the conservation of these molecular processes in human tissues. RESULTS: Food allergens are sampled by using small intestine (SI) epithelial secretory cells (termed secretory antigen passages [SAPs]) that are localized to the SI villous and crypt region. SAPs channel food allergens to lamina propria mucosal mast cells through an IL-13-CD38-cyclic adenosine diphosphate ribose (cADPR)-dependent process. Blockade of IL-13-induced CD38/cADPR-dependent SAP antigen passaging in mice inhibited induction of clinical manifestations of FIA. IL-13-CD38-cADPR-dependent SAP sampling of food allergens was conserved in human intestinal organoids. CONCLUSION: We identify that SAPs are a mechanism by which food allergens are channeled across the SI epithelium mediated by the IL-13/CD38/cADPR pathway, regulate the onset of FIA reactions, and are conserved in human intestine.


Asunto(s)
Alérgenos/inmunología , Anafilaxia/inmunología , Hipersensibilidad a los Alimentos/inmunología , Interleucina-13/inmunología , Mucosa Intestinal/inmunología , Alérgenos/metabolismo , Anafilaxia/metabolismo , Animales , Hipersensibilidad a los Alimentos/metabolismo , Humanos , Inmunoglobulina E/inmunología , Interleucina-13/metabolismo , Mucosa Intestinal/metabolismo , Mastocitos/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos NOD , Ratones SCID
8.
Int J Mol Sci ; 20(3)2019 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-30744098

RESUMEN

Pendrin (SLC26A4), a Cl-/anion exchanger, is expressed at high levels in kidney, thyroid, and inner ear epithelia, where it has an essential role in bicarbonate secretion/chloride reabsorption, iodide accumulation, and endolymph ion balance, respectively. Pendrin is expressed at lower levels in other tissues, such as airways and esophageal epithelia, where it is transcriptionally regulated by the inflammatory cytokines interleukin (IL)-4 and IL-13 through a signal transducer and activator of transcription 6 (STAT6)-mediated pathway. In the airway epithelium, increased pendrin expression during inflammatory diseases leads to imbalances in airway surface liquid thickness and mucin release, while, in the esophageal epithelium, dysregulated pendrin expression is supposed to impact the intracellular pH regulation system. In this review, we discuss some of the recent findings on interleukin-mediated transcriptional regulation of pendrin and how this dysregulation impacts airway and esophagus epithelial homeostasis during inflammatory diseases.


Asunto(s)
Mucosa Esofágica/metabolismo , Regulación de la Expresión Génica , Interleucinas/metabolismo , Mucosa Respiratoria/metabolismo , Transportadores de Sulfato/genética , Transcripción Genética , Animales , Biomarcadores , Mucosa Esofágica/efectos de los fármacos , Humanos , Inflamación/tratamiento farmacológico , Inflamación/etiología , Inflamación/metabolismo , Moco/metabolismo , Mucosa Respiratoria/efectos de los fármacos , Transportadores de Sulfato/metabolismo , Transportadores de Sulfato/uso terapéutico
9.
J Allergy Clin Immunol ; 143(6): 2131-2146, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30578870

RESUMEN

BACKGROUND: The incidence of eosinophilic esophagitis (EoE) is greater in male than female subjects, and the underlying molecular basis for this sex bias remains unclear. OBJECTIVE: We sought to delineate the contribution of the sex hormone estrogen to the EoE phenotype and esophageal epithelial barrier function and remodeling. METHODS: We performed demographic and incidence analyses of EoE in male and female subjects from a single-center pediatric cohort. Estrogen-responsive gene expression analyses and estrogen receptor (ESR) immunofluorescence staining of esophageal biopsy specimens from patients with EoE and control subjects were performed. The effect of 17ß-estradiol (E2) on IL-13-induced signaling pathways, gene expression, and esophageal epithelial architecture and barrier function in a primary human esophageal keratinocyte cell (EPC2) culture system (EPC2-air-liquid interface) was examined. RESULTS: We observed a male predominance in patients with EoE. Analyses of RNA sequencing data sets revealed a significant dysregulation of the estrogen-responsive gene network and expression of ESR1 and ESR2 in esophageal biopsy specimens from patients with EoE compared with control subjects. IL-13 stimulation of EPC2-air-liquid interface cells led to altered cellular architecture with induced dilation of intercellular spaces and barrier dysfunction. Pretreatment of EPC2s with E2 prior to IL-13 exposure abrogated IL-13-induced architectural changes and esophageal barrier dysfunction. Mechanistically, E2-protective effects were dependent on ESR2 and associated with diminishing of IL-13-induced tyrosine kinase 2 and signal transducer and activator of transcription 6 phosphorylation and EoE-dysregulated gene expression. CONCLUSIONS: Estrogen-responsive genes are modified in patients with EoE compared with control subjects. E2 attenuated IL-13-induced architectural changes and esophageal epithelial barrier dysfunction through inhibition of the IL-13/tyrosine kinase 2/signal transducer and activator of transcription 6 pathway via ESR2-dependent process. Estrogen hormone signaling may protect against development of EoE in female subjects.


Asunto(s)
Esofagitis Eosinofílica/tratamiento farmacológico , Esófago/inmunología , Estradiol/uso terapéutico , Mucosa Intestinal/fisiología , Queratinocitos/fisiología , Factores Sexuales , Adolescente , Adulto , Células Cultivadas , Niño , Preescolar , Esofagitis Eosinofílica/epidemiología , Esófago/efectos de los fármacos , Femenino , Humanos , Incidencia , Interleucina-13/metabolismo , Mucosa Intestinal/efectos de los fármacos , Masculino , Cultivo Primario de Células , Receptores de Estrógenos/metabolismo , Factor de Transcripción STAT6/metabolismo , Análisis de Secuencia de ARN , Transducción de Señal , TYK2 Quinasa/metabolismo , Adulto Joven
10.
J Allergy Clin Immunol ; 142(6): 1843-1855, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29729938

RESUMEN

BACKGROUND: Eosinophilic esophagitis (EoE) is characterized by histopathologic modifications of esophageal tissue, including eosinophil-rich inflammation, basal zone hyperplasia, and dilated intercellular spaces (DIS). The underlying molecular processes that drive the histopathologic features of EoE remain largely unexplored. OBJECTIVE: We sought to investigate the involvement of solute carrier family 9, subfamily A, member 3 (SLC9A3) in esophageal epithelial intracellular pH (pHi) and DIS formation and the histopathologic features of EoE. METHODS: We examined expression of esophageal epithelial gene networks associated with regulation of pHi in the EoE transcriptome of primary esophageal epithelial cells and an in vitro esophageal epithelial 3-dimensional model system (EPC2-ALI). Molecular and cellular analyses and ion transport assays were used to evaluate the expression and function of SLC9A3. RESULTS: We identified altered expression of gene networks associated with regulation of pHi and acid-protective mechanisms in esophageal biopsy specimens from pediatric patients with EoE (healthy subjects, n = 6; patients with EoE, n = 10). The most dysregulated gene central to regulating pHi was SLC9A3. SLC9A3 expression was increased within the basal layer of esophageal biopsy specimens from patients with EoE, and expression positively correlated with disease severity (eosinophils/high-power field) and DIS (healthy subjects, n = 10; patients with EoE, n = 10). Analyses of esophageal epithelial cells revealed IL-13-induced, signal transducer and activator of transcription 6-dependent SLC9A3 expression and Na+-dependent proton secretion and that SLC9A3 activity correlated positively with DIS formation. Finally, we showed that IL-13-mediated, Na+-dependent proton secretion was the primary intracellular acid-protective mechanism within the esophageal epithelium and that blockade of SLC9A3 transport abrogated IL-13-induced DIS formation. CONCLUSIONS: SLC9A3 plays a functional role in DIS formation, and pharmacologic interventions targeting SLC9A3 function may suppress the histopathologic manifestations in patients with EoE.


Asunto(s)
Esofagitis Eosinofílica/metabolismo , Células Epiteliales/química , Espacio Extracelular , Intercambiador 3 de Sodio-Hidrógeno/metabolismo , Línea Celular , Esofagitis Eosinofílica/patología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Esófago/patología , Guanidinas/farmacología , Humanos , Concentración de Iones de Hidrógeno , Interleucina-13/farmacología , Metacrilatos/farmacología , Intercambiador 3 de Sodio-Hidrógeno/antagonistas & inhibidores
11.
Cell Physiol Biochem ; 45(3): 867-882, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29421809

RESUMEN

BACKGROUND/AIMS: In the human genome, more than 400 genes encode ion channels, which are ubiquitously expressed and often coexist and participate in almost all physiological processes. Therefore, ion channel blockers represent fundamental tools in discriminating the contribution of individual channel types to a physiological phenomenon. However, unspecific effects of these compounds may represent a confounding factor. Three commonly used chloride channel inhibitors, i.e. 4,4'-diisothiocyano-2,2'-stilbene-disulfonic acid (DIDS), 5-nitro-2-[(3-phenylpropyl) amino]benzoic acid (NPPB) and the anti-inflammatory drug niflumic acid were tested to identify the lowest concentration effective on Cl- channels and ineffective on K+ channels. METHODS: The activity of the above mentioned compounds was tested by whole cell patch-clamp on the swelling-activated Cl- current ICl,swell and on the endogenous voltage-dependent, outwardly rectifying K+ selective current in human kidney cell lines (HEK 293/HEK 293 Phoenix). RESULTS: Micromolar (1-10 µM) concentrations of DIDS and NPPB could not discriminate between the Cl- and K+ selective currents. Specifically, 1 µM DIDS only affected the K+ current and 10 µM NPPB equally affected the Cl- and K+ currents. Only relatively high (0.1-1 mM) concentrations of DIDS and prolonged (5 minutes) exposure to 0.1-1 mM NPPB preferentially suppressed the Cl- current. Niflumic acid preferentially inhibited the Cl- current, but also significantly affected the K+ current. The endogenous voltage-dependent, outwardly rectifying K+ selective current in HEK 293/HEK 293 Phoenix cells was shown to arise from the Kv 3.1 channel, which is extensively expressed in brain and is involved in neurological diseases. CONCLUSION: The results of the present study underscore that sensitivity of a given physiological phenomenon to the Cl- channel inhibitors NPPB, DIDS and niflumic acid may actually arise from an inhibition of Cl- channels but can also result from an inhibition of voltage-dependent K+ channels, including the Kv 3.1 channel. The use of niflumic acid as anti-inflammatory drug in patients with concomitant Kv 3.1 dysfunction may result contraindicated.


Asunto(s)
Potenciales de Acción/efectos de los fármacos , Canal de Potasio Kv1.3/metabolismo , Bloqueadores de los Canales de Potasio/farmacología , Potasio/metabolismo , Animales , Cloruros/metabolismo , Células Epiteliales/citología , Células HEK293 , Humanos , Túbulos Renales Proximales/citología , Canal de Potasio Kv1.3/antagonistas & inhibidores , Canal de Potasio Kv1.3/genética , Ratones , Células 3T3 NIH , Ácido Niflúmico/química , Ácido Niflúmico/farmacología , Nitrobenzoatos/química , Nitrobenzoatos/farmacología , Técnicas de Placa-Clamp , Bloqueadores de los Canales de Potasio/química , Interferencia de ARN , ARN Interferente Pequeño/metabolismo
12.
Cell Physiol Biochem ; 43(6): 2297-2309, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29073588

RESUMEN

BACKGROUND/AIM: Accurate genotyping of CYP2D6 is challenging due to its inherent genetic variation, copy number variation (duplications and deletions) and hybrid formation with highly homologous pseudogenes. Because a relatively high percentage (∼25%) of clinically prescribed drugs are substrates for this enzyme, accurate determination of its genotype for phenotype prediction is essential. METHODS: A cohort of 365 patient samples was genotyped for CYP2D6 using Sanger sequencing (as the gold standard), hydrolysis probe assays or pyrosequencing. RESULTS: A discrepant result between the three genotyping methods for the loss of function CYP2D6*3 (g.2549delA, rs35742686) genetic variant was found in one of the samples. This sample also contained the CYP2D6 g.2470T>C (rs17002852) variation, which had an allele frequency of 2.47% in our cohort. Redesign of the CYP2D6*3 pyrosequencing and hydrolysis probe assays to avoid CYP2D6 g.2470 corrected the anomaly. CONCLUSION: To evidence allele drop out and increase the accuracy of genotyping, intra-patient validation of the same genetic variation with at least two separate methods should be considered.


Asunto(s)
Citocromo P-450 CYP2D6/genética , Variaciones en el Número de Copia de ADN , Técnicas de Genotipaje/métodos , Alelos , Estudios de Cohortes , ADN/química , ADN/aislamiento & purificación , ADN/metabolismo , Análisis Discriminante , Frecuencia de los Genes , Genotipo , Haplotipos , Humanos , Fenotipo , Análisis de Secuencia de ADN
13.
Cell Physiol Biochem ; 41(4): 1491-1502, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28365704

RESUMEN

Pendrin is upregulated in bronchial epithelial cells following IL-4 stimulation via binding of STAT6 to an N4 GAS motif. Basal CpG methylation of the pendrin promoter is cell-specific. We studied if a correlation exists between IL-4 sensitivity and the CpG methylation status of the pendrin promoter in human bronchial epithelial cell models. METHODS: Real-time PCR and pyrosequencing were used to respectively quantify pendrin mRNA levels and methylation of pendrin promoter, with and without IL-4 stimulation, in healthy and diseased primary HBE cells, as well as NCI-H292 cells. RESULTS: Increases in pendrin mRNA after IL-4 stimulation was more robust in NCI-H292 cells than in primary cells. The amount of gDNA methylated varied greatly between the cell types. In particular, CpG site 90 located near the N4 GAS motif was highly methylated in the primary cells. An additional CpG site (90bis), created by a SNP, was found only in the primary cells. IL-4 stimulation resulted in dramatic demethylation of CpG sites 90 and 90bis in the primary cells. CONCLUSIONS: IL-4 induces demethylation of specific CpG sites within the pendrin promoter. These epigenetic alterations are cell type specific, and may in part dictate pendrin mRNA transcription.


Asunto(s)
Bronquios/metabolismo , Islas de CpG , Metilación de ADN , Células Epiteliales/metabolismo , Interleucina-4/metabolismo , Proteínas de Transporte de Membrana/biosíntesis , Elementos de Respuesta , Bronquios/citología , Línea Celular , Epigénesis Genética , Células Epiteliales/citología , Femenino , Humanos , Persona de Mediana Edad , ARN Mensajero/biosíntesis , Transportadores de Sulfato
14.
JCI Insight ; 2(5): e91288, 2017 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-28289719

RESUMEN

Preterm birth (PTB) is a leading worldwide cause of morbidity and mortality in infants. Maternal inflammation induced by microbial infection is a critical predisposing factor for PTB. However, biological processes associated with competency of pathogens, including viruses, to induce PTB or sensitize for secondary bacterial infection-driven PTB are unknown. We show that pathogen/pathogen-associated molecular pattern-driven activation of type I IFN/IFN receptor (IFNAR) was sufficient to prime for systemic and uterine proinflammatory chemokine and cytokine production and induction of PTB. Similarly, treatment with recombinant type I IFNs recapitulated such effects by exacerbating proinflammatory cytokine production and reducing the dose of secondary inflammatory challenge required for induction of PTB. Inflammatory challenge-driven induction of PTB was eliminated by defects in type I IFN, TLR, or IL-6 responsiveness, whereas the sequence of type I IFN sensing by IFNAR on hematopoietic cells was essential for regulation of proinflammatory cytokine production. Importantly, we also show that type I IFN priming effects are conserved from mice to nonhuman primates and humans, and expression of both type I IFNs and proinflammatory cytokines is upregulated in human PTB. Thus, activation of the type I IFN/IFNAR axis in pregnancy primes for inflammation-driven PTB and provides an actionable biomarker and therapeutic target for mitigating PTB risk.


Asunto(s)
Inflamación/fisiopatología , Interferón Tipo I/fisiología , Nacimiento Prematuro , Animales , Citocinas/fisiología , Susceptibilidad a Enfermedades , Femenino , Humanos , Recién Nacido , Interferón Tipo I/metabolismo , Ratones , Embarazo , Transducción de Señal
15.
Innate Immun ; 23(2): 175-187, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27932520

RESUMEN

Sepsis is a life-threatening event predominantly caused by Gram-negative bacteria. Bacterial infection causes a pronounced macrophage (MΦ) and dendritic cell activation that leads to excessive pro-inflammatory cytokine IL-1ß, IL-6 and TNF-α production (cytokine storm), resulting in endotoxic shock. Previous experimental studies have revealed that inhibiting NF-κB signaling ameliorates disease symptoms; however, the contribution of myeloid p65 in endotoxic shock remains elusive. In this study, we demonstrate increased mortality in mice lacking p65 in the myeloid lineage (p65Δmye) compared with wild type mice upon ultra-pure LPS challenge. We show that increased susceptibility to LPS-induced shock was associated with elevated serum level of IL-1ß and IL-6. Mechanistic analyses revealed that LPS-induced pro-inflammatory cytokine production was ameliorated in p65-deficient bone marrow-derived MΦs; however, p65-deficient 'activated' peritoneal MΦs exhibited elevated IL-1ß and IL-6. We show that the elevated pro-inflammatory cytokine secretion was due, in part, to increased accumulation of IL-1ß mRNA and protein in activated inflammatory MΦs. The increased IL-1ß was linked with heightened binding of PU.1 and CCAAT/enhancer binding protein-ß to Il1b and Il6 promoters in activated inflammatory MΦs. Our data provide insight into a role for NF-κB in the negative regulation of pro-inflammatory cytokines in myeloid cells.


Asunto(s)
Macrófagos Peritoneales/inmunología , Macrófagos/inmunología , Sepsis/inmunología , Factor de Transcripción ReIA/metabolismo , Animales , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Células Cultivadas , Femenino , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Lipopolisacáridos/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Regiones Promotoras Genéticas/genética , Proteínas Proto-Oncogénicas/metabolismo , Sepsis/inducido químicamente , Transactivadores/metabolismo , Factor de Transcripción ReIA/genética , Activación Transcripcional
16.
Cell Physiol Biochem ; 32(7): 238-48, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24429829

RESUMEN

BACKGROUND: Pendrin, an anion exchanger associated with the inner ear, thyroid and kidney, plays a significant role in respiratory tissues and diseases, where its expression is increased following IL-4 and IL-13 exposure. The mechanism leading to increased pendrin expression is in part due to binding of STAT6 to a consensus sequence (N4 GAS motif) located in the pendrin promoter. As retrospective analyses of the 5' upstream sequence of the human pendrin promoter revealed an additional N4 GAS motif (1660 base pairs upstream of the one previously identified), we set out to define its contribution to IL-4 stimulated changes in pendrin promoter activity. METHODS AND RESULTS: Electrophoretic mobility shift assays showed that STAT6 bound to oligonucleotides corresponding to both N4 GAS motifs in vitro, while dual luciferase promoter assays revealed that only one of the N4 GAS motifs was necessary for IL-4 -stimulated increases in pendrin promoter activity in living cells. We then examined the ability of STAT6 to bind each of the N4 GAS motifs in vivo with a site-specific ChIP assay, the results of which showed that STAT6 interacted with only the N4 GAS motif that was functionally implicated in increasing the activity of the pendrin promoter following IL-4 treatment. CONCLUSIONS: Of the two N4 GAS motifs located in the human pendrin promoter region analyzed in this study (nucleotides -3906 to +7), only the one located nearest to the first coding ATG participates in IL-4 stimulated increases in promoter activity.


Asunto(s)
Proteínas de Transporte de Membrana/genética , Motivos de Nucleótidos/genética , Regiones Promotoras Genéticas , Factor de Transcripción STAT6/genética , Sitios de Unión , Humanos , Interleucina-13/metabolismo , Interleucina-4/genética , Interleucina-4/metabolismo , Proteínas de Transporte de Membrana/biosíntesis , Proteínas de Transporte de Membrana/química , Unión Proteica , Factor de Transcripción STAT6/química , Transportadores de Sulfato
17.
Cell Physiol Biochem ; 28(3): 397-406, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22116354

RESUMEN

Inspection of the nucleotide sequence of the human pendrin promoter revealed the presence of a CpG island. We investigated the ability of IL-4 to stimulate pendrin message expression in two separate cell lines: the NCI-H292 lung epithelial cell line and the human embryonic kidney (HEK)-Blue cell line. The expression of pendrin mRNA was significantly increased in both cells types after 4, 24, 48 and 72 hours treatment with IL-4, and interestingly, the increase in pendrin mRNA was greater in the NCI-H292 cells. Methylation of CpG sites within the promoter regions of genes can affect activities of gene promoters and have either positive or negative implications on the transcription and mRNA expression of the particular gene. We quantitatively analyzed the methylation status of 35 CpG sites within the human pendrin promoter in both cell lines. The basal methylation pattern was statistically different at multiple CpG sites between the NCI-H292 and HEK-Blue cells. We propose that the difference in basal methylation between the two cell types may determine a cell-specific response to IL-4 in terms of pendrin mRNA expression.


Asunto(s)
Metilación de ADN , Proteínas de Transporte de Membrana/metabolismo , Regiones Promotoras Genéticas/genética , Secuencia de Bases , Línea Celular , Islas de CpG/genética , Epigénesis Genética , Humanos , Interleucina-4/farmacología , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/genética , Datos de Secuencia Molecular , ARN Mensajero/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Transportadores de Sulfato , Factores de Tiempo
18.
Cell Physiol Biochem ; 28(3): 451-66, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22116358

RESUMEN

Pendrin (SLC26A4, PDS) is an electroneutral anion exchanger transporting I(-), Cl(-), HCO(3)(-), OH(-), SCN(-) and formate. In the thyroid, pendrin is expressed at the apical membrane of the follicular epithelium and may be involved in mediating apical iodide efflux into the follicle; in the inner ear, it plays a crucial role in the conditioning of the pH and ion composition of the endolymph; in the kidney, it may exert a role in pH homeostasis and regulation of blood pressure. Mutations of the pendrin gene can lead to syndromic and non-syndromic hearing loss with EVA (enlarged vestibular aqueduct). Functional tests of mutated pendrin allelic variants found in patients with Pendred syndrome or non-syndromic EVA (ns-EVA) revealed that the pathological phenotype is due to the reduction or loss of function of the ion transport activity. The diagnosis of Pendred syndrome and ns-EVA can be difficult because of the presence of phenocopies of Pendred syndrome and benign polymorphisms occurring in the general population. As a consequence, defining whether or not an allelic variant is pathogenic is crucial. Recently, we found that the two parameters used so far to assess the pathogenic potential of a mutation, i.e. low incidence in the control population, and substitution of evolutionary conserved amino acids, are not always reliable for predicting the functionality of pendrin allelic variants; actually, we identified mutations occurring with the same frequency in the cohort of hearing impaired patients and in the control group of normal hearing individuals. Moreover, we identified functional polymorphisms affecting highly conserved amino acids. As a general rule however, we observed a complete loss of function for all truncations and amino acid substitutions involving a proline. In this view, clinical and radiological studies should be combined with genetic and molecular studies for a definitive diagnosis. In performing genetic studies, the possibility that the mutation could affect regions other than the pendrin coding region, such as its promoter region and/or the coding regions of functionally related genes (FOXI1, KCNJ10), should be taken into account. The presence of benign polymorphisms in the population suggests that genetic studies should be corroborated by functional studies; in this context, the existence of hypo-functional variants and possible differences between the I(-)/Cl(-) and Cl(-)/HCO(3)(-) exchange activities should be carefully evaluated.


Asunto(s)
Alelos , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Aniones/metabolismo , Bocio Nodular/genética , Bocio Nodular/patología , Pérdida Auditiva Sensorineural/genética , Pérdida Auditiva Sensorineural/patología , Humanos , Transporte Iónico , Mutación , Polimorfismo de Nucleótido Simple , Transportadores de Sulfato , Acueducto Vestibular/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...