Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 63(21): e202320081, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38494945

RESUMEN

Because internal alkenes are more challenging synthetic targets than terminal alkenes, metal-catalyzed olefin mono-transposition (i.e., positional isomerization) approaches have emerged to afford valuable E- or Z- internal alkenes from their complementary terminal alkene feedstocks. However, the applicability of these methods has been hampered by lack of generality, commercial availability of precatalysts, and scalability. Here, we report a nickel-catalyzed platform for the stereodivergent E/Z-selective synthesis of internal alkenes at room temperature. Commercial reagents enable this one-carbon transposition of terminal alkenes to valuable E- or Z-internal alkenes via a Ni-H-mediated insertion/elimination mechanism. Though the mechanistic regime is the same in both systems, the underlying pathways that lead to each of the active catalysts are distinct, with the Z-selective catalyst forming from comproportionation of an oxidative addition complex followed by oxidative addition with substrate and the E-selective catalyst forming from protonation of the metal by the trialkylphosphonium salt additive. In each case, ligand sterics and denticity control stereochemistry and prevent over-isomerization.

2.
Angew Chem Int Ed Engl ; 63(2): e202311165, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-37930784

RESUMEN

A robust electrochemically driven nickel-catalyzed halogen exchange of unsaturated halides and triflates (Br to Cl, I to Cl, I to Br, and OTf to Cl) is reported. A combination of NiCl2 ⋅ glyme as the precatalyst, 2,2'-bipyridine as a ligand, NMP as the solvent, and electrochemistry allowed the generation of a nickel species that promotes reductive elimination of the desired product. This paired electrochemical halogenation is compatible with a range of unsaturated halides and triflates, including heterocycles, dihaloarenes, and alkenes with good functional-group tolerance. Joint experimental and theoretical mechanistic investigations highlighted three catalytic events: i) oxidative addition of the aryl halide to a Ni(0) species to deliver a Ni(II) intermediate; ii) halide metathesis at Ni(II); iii) electrochemical oxidation of Ni(II) to Ni(III) to enable the formation of the desired aryl halide upon reductive elimination. This methodology allows the replacement of heavy halogens (I or Br) or polar atoms (O) with the corresponding lighter and more lipophilic Cl group to block undesired reactivity or modify the properties of drug and agrochemical candidates.

3.
Angew Chem Int Ed Engl ; 63(2): e202311557, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-37984444

RESUMEN

Over the last fifty years, the use of nickel catalysts for facilitating organic transformations has skyrocketed. Nickel(0) sources act as useful precatalysts because they can enter a catalytic cycle through ligand exchange, without needing to undergo additional elementary steps. However, most Ni(0) precatalysts are synthesized with stoichiometric aluminum-hydride reductants, pyrophoric reagents that are not atom-economical and must be used at cryogenic temperatures. Here, we demonstrate that Ni(II) salts can be reduced on preparative scale using electrolysis to yield a variety of Ni(0) and Ni(II) complexes that are widely used as precatalysts in organic synthesis, including bis(1,5-cyclooctadiene)nickel(0) [Ni(COD)2 ]. This method overcomes the reproducibility issues of previously reported methods by standardizing the procedure, such that it can be performed anywhere in a robust manner. It can be transitioned to large scale through an electrochemical recirculating flow process and extended to an in situ reduction protocol to generate catalytic amounts of Ni(0) for organic transformations. We anticipate that this work will accelerate adoption of preparative electrochemistry for the synthesis of low-valent organometallic complexes in academia and industry.

4.
ACS Org Inorg Au ; 3(6): 364-370, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38075451

RESUMEN

This Account highlights the recent contributions made by our laboratory in the development of novel strategies to synthesize fluorinated amines. These strategies allow the practitioner to efficiently access carbamoyl fluorides, thiocarbamoyl fluorides as well as trifluoromethylamines using CO2 or CS2 as benign C1 sources. In addition, a novel N(SCF3)CF3 moiety was synthesized. Noteworthy, we demonstrated that this reagent could also be used in radical- or electrophilic-based trifluoromethylthiolation reactions.

5.
Nat Chem ; 15(9): 1267-1275, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37322100

RESUMEN

Target identification involves deconvoluting the protein target of a pharmacologically active, small-molecule ligand, a process that is critical for early drug discovery yet technically challenging. Photoaffinity labelling strategies have become the benchmark for small-molecule target deconvolution, but covalent protein capture requires the use of high-energy ultraviolet light, which can complicate downstream target identification. Thus, there is a strong demand for alternative technologies that allow for controlled activation of chemical probes to covalently label their protein target. Here we introduce an electroaffinity labelling platform that leverages the use of a small, redox-active diazetidinone functional group to enable chemoproteomic-based target identification of pharmacophores within live cell environments. The underlying discovery to enable this platform is that the diazetidinone can be electrochemically oxidized to reveal a reactive intermediate useful for covalent modification of proteins. This work demonstrates the electrochemical platform to be a functional tool for drug-target identification.


Asunto(s)
Descubrimiento de Drogas , Proteínas , Proteínas/metabolismo , Etiquetas de Fotoafinidad/química , Ligandos , Farmacóforo
6.
Chem Sci ; 14(14): 3893-3898, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-37035709

RESUMEN

We disclosed herein a straightforward strategy for the synthesis of unprecedented N-((trifluoromethyl)thio), N-(trifluoromethyl) amines using a combination of isothiocyanates with a fluoride source and an electrophilic trifluoromethylthiolation reagent. More interestingly, the scalability of the methodology has been demonstrated and the stability of the new motif has been studied.

7.
Nature ; 605(7911): 687-695, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35614246

RESUMEN

The study and application of transition metal hydrides (TMHs) has been an active area of chemical research since the early 1960s1, for energy storage, through the reduction of protons to generate hydrogen2,3, and for organic synthesis, for the functionalization of unsaturated C-C, C-O and C-N bonds4,5. In the former instance, electrochemical means for driving such reactivity has been common place since the 1950s6 but the use of stoichiometric exogenous organic- and metal-based reductants to harness the power of TMHs in synthetic chemistry remains the norm. In particular, cobalt-based TMHs have found widespread use for the derivatization of olefins and alkynes in complex molecule construction, often by a net hydrogen atom transfer (HAT)7. Here we show how an electrocatalytic approach inspired by decades of energy storage research can be made use of in the context of modern organic synthesis. This strategy not only offers benefits in terms of sustainability and efficiency but also enables enhanced chemoselectivity and distinct, tunable reactivity. Ten different reaction manifolds across dozens of substrates are exemplified, along with detailed mechanistic insights into this scalable electrochemical entry into Co-H generation that takes place through a low-valent intermediate.

8.
J Org Chem ; 87(9): 5690-5702, 2022 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-35422123

RESUMEN

A systematic study of the manganese-mediated α-radical addition of carbonyl groups to olefins is presented. After an in-depth investigation of the parameters that govern the reaction, a first round of optimization allowed the development of a unified stoichiometric set of conditions, which were subsequently assessed during the exploration of the scope. Due to observed limitations, the knowledge accumulated during the initial study was reengaged to quickly optimize promising substrates that were so far inaccessible under previously reported conditions. Altogether these results led to the creation of a predictive model based on the pKa of the carbonyl compound and both the substitution and geometry of the alkene coupling partner. Finally, a departure from the use of stoichiometric manganese was enabled through the development of a robust and practical electrocatalytic version of the reaction.

9.
Tetrahedron Lett ; 792021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34483378

RESUMEN

A new approach to Silodosin capitalizing on a radical retrosynthetic strategy to dissect the molecule into two halves is reported. Using a reductive decarboxylative cross-coupling, a simple indoline can be coupled to a chiral pool-derived fragment to arrive at the target in only seven steps (LLS). This route avoids the use of resolution strategies or asymmetric hydrogenation that requires a subsequent Curtius rearrangement to install a key amino functionality.

10.
ACS Cent Sci ; 7(9): 1473-1485, 2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-34584948

RESUMEN

Phosphate linkages govern life as we know it. Their unique properties provide the foundation for many natural systems from cell biology and biosynthesis to the backbone of nucleic acids. Phosphates are ideal natural moieties; existing as ionized species in a stable P(V)-oxidation state, they are endowed with high stability but exhibit enzymatically unlockable potential. Despite intense interest in phosphorus catalysis and condensation chemistry, organic chemistry has not fully embraced the potential of P(V) reagents. To be sure, within the world of chemical oligonucleotide synthesis, modern approaches utilize P(III) reagent systems to create phosphate linkages and their analogs. In this Outlook, we present recent studies from our laboratories suggesting that numerous exciting opportunities for P(V) chemistry exist at the nexus of organic synthesis and biochemistry. Applications to the synthesis of stereopure antisense oligonucleotides, cyclic dinucleotides, methylphosphonates, and phosphines are reviewed as well as chemoselective modification to peptides, proteins, and nucleic acids. Finally, an outlook into what may be possible in the future with P(V) chemistry is previewed, suggesting these examples represent just the tip of the iceberg.

11.
Org Lett ; 23(24): 9337-9342, 2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34499517

RESUMEN

An operationally simple, scalable, and chemoselective method for the direct phosphorylation of alcohols using a P(V)-approach based on the Ψ-reagent platform is disclosed. The method features a broad substrate scope of utility in both simple and complex settings and provides access to valuable phosphorylated alcohols that would be otherwise difficult to obtain.


Asunto(s)
Alcoholes
12.
Science ; 373(6560): 1265-1270, 2021 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-34516793

RESUMEN

The promise of gene-based therapies is being realized at an accelerated pace, with more than 155 active clinical trials and multiple U.S. Food and Drug Administration approvals for therapeutic oligonucleotides, by far most of which contain modified phosphate linkages. These unnatural linkages have desirable biological and physical properties but are often accessed with difficulty using phosphoramidite chemistry. We report a flexible and efficient [P(V)]­based platform that can install a wide variety of phosphate linkages at will into oligonucleotides. This approach uses readily accessible reagents and can install not only stereodefined or racemic thiophosphates but any combination of (S, R or rac)­PS with native phosphodiester (PO2) and phosphorodithioate (PS2) linkages into DNA and other modified nucleotide polymers. This platform easily accesses this diversity under a standardized coupling protocol with sustainably prepared, stable P(V) reagents.


Asunto(s)
Oligonucleótidos/síntesis química
13.
Proc Natl Acad Sci U S A ; 118(28)2021 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-34244445

RESUMEN

The development of a versatile platform for the synthesis of 1,2-difunctionalized bicyclo[1.1.1]pentanes to potentially mimic ortho/meta-substituted arenes is described. The syntheses of useful building blocks bearing alcohol, amine, and carboxylic acid functional handles have been achieved from a simple common intermediate. Several ortho- and meta-substituted benzene analogs, as well as simple molecular matched pairs, have also been prepared using this platform. The results of in-depth ADME (absorption, distribution, metabolism, and excretion) investigations of these systems are presented, as well as computational studies which validate the ortho- or meta-character of these bioisosteres.


Asunto(s)
Hidrocarburos Aromáticos/química , Pentanos/química , Bioensayo , Cristalografía por Rayos X , Hepatocitos/metabolismo , Humanos , Concentración 50 Inhibidora , Pentanos/síntesis química , Estereoisomerismo
14.
J Am Chem Soc ; 143(25): 9478-9488, 2021 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-34128671

RESUMEN

One of the most oft-employed methods for C-C bond formation involving the coupling of vinyl-halides with aldehydes catalyzed by Ni and Cr (Nozaki-Hiyama-Kishi, NHK) has been rendered more practical using an electroreductive manifold. Although early studies pointed to the feasibility of such a process, those precedents were never applied by others due to cumbersome setups and limited scope. Here we show that a carefully optimized electroreductive procedure can enable a more sustainable approach to NHK, even in an asymmetric fashion on highly complex medicinally relevant systems. The e-NHK can even enable non-canonical substrate classes, such as redox-active esters, to participate with low loadings of Cr when conventional chemical techniques fail. A combination of detailed kinetics, cyclic voltammetry, and in situ UV-vis spectroelectrochemistry of these processes illuminates the subtle features of this mechanistically intricate process.


Asunto(s)
Alcoholes/síntesis química , Aldehídos/química , Amidas/química , Catálisis , Cromo/química , Técnicas Electroquímicas/métodos , Hidrocarburos Bromados/química , Níquel/química , Estereoisomerismo
15.
Nat Chem ; 13(4): 367-372, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33758368

RESUMEN

Electrochemical techniques have long been heralded for their innate sustainability as efficient methods to achieve redox reactions. Carbonyl desaturation, as a fundamental organic oxidation, is an oft-employed transformation to unlock adjacent reactivity through the formal removal of two hydrogen atoms. To date, the most reliable methods to achieve this seemingly trivial reaction rely on transition metals (Pd or Cu) or stoichiometric reagents based on I, Br, Se or S. Here we report an operationally simple pathway to access such structures from enol silanes and phosphates using electrons as the primary reagent. This electrochemically driven desaturation exhibits a broad scope across an array of carbonyl derivatives, is easily scalable (1-100 g) and can be predictably implemented into synthetic pathways using experimentally or computationally derived NMR shifts. Systematic comparisons to state-of-the-art techniques reveal that this method can uniquely desaturate a wide array of carbonyl groups. Mechanistic interrogation suggests a radical-based reaction pathway.


Asunto(s)
Aldehídos/síntesis química , Alquenos/síntesis química , Éteres/química , Cetonas/síntesis química , Técnicas Electroquímicas , Modelos Químicos , Organofosfatos/química , Oxidación-Reducción , Silanos/química
16.
Bioconjug Chem ; 32(2): 279-289, 2021 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-33523652

RESUMEN

Reducing the required frequence of drug dosing can improve the adherence of patients to chronic treatments. Hence, drugs with longer in vivo half-lives are highly desirable. One of the most promising approaches to extend the in vivo half-life of drugs is conjugation to human serum albumin (HSA). In this work, we describe the use of AlbuBinder 1, a small-molecule noncovalent HSA binder, to extend the in vivo half-life and pharmacology of small-molecule BMP1/TLL inhibitors in humanized mice (HSA KI/KI). A series of conjugates of AlbuBinder 1 with BMP1/TLL inhibitors were prepared. In particular, conjugate c showed good solubility and a half-life extension of >20-fold versus the parent molecule in the HSA KI/KI mice, reaching half-lives of >48 h with maintained maximal inhibition of plasma BMP1/TLL. The same conjugate showed a half-life of only 3 h in the wild-type mice, suggesting that the half-life extension was principally due to specific interactions with HSA. It is envisioned that conjugation to AlbuBinder 1 should be applicable to a wide range of small molecule or peptide drugs with short half-lives. In this context, AlbuBinders represent a viable alternative to existing half-life extension technologies.


Asunto(s)
Metaloproteasas/metabolismo , Inhibidores de Proteasas/farmacología , Albúmina Sérica Humana/metabolismo , Bibliotecas de Moléculas Pequeñas/metabolismo , Animales , Proteína Morfogenética Ósea 1/metabolismo , Semivida , Humanos , Ratones , Prueba de Estudio Conceptual , Inhibidores de Proteasas/farmacocinética
17.
Angew Chem Int Ed Engl ; 60(14): 7935-7940, 2021 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-33449408

RESUMEN

Metal-catalyzed C-N cross-coupling generally forms C-N bonds by reductive elimination from metal complexes bearing covalent C- and N-ligands. We have identified a Cu-mediated C-N cross-coupling that uses a dative N-ligand in the bond-forming event, which, in contrast to conventional methods, generates reactive cationic products. Mechanistic studies suggest the process operates via transmetalation of an aryl organoboron to a CuII complex bearing neutral N-ligands, such as nitriles or N-heterocycles. Subsequent generation of a putative CuIII complex enables the oxidative C-N coupling to take place, delivering nitrilium intermediates and pyridinium products. The reaction is general for a range of N(sp) and N(sp2 ) precursors and can be applied to drug synthesis and late-stage N-arylation, and the limitations in the methodology are mechanistically evidenced.

18.
ACS Cent Sci ; 6(11): 2117, 2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-33274288

RESUMEN

[This corrects the article DOI: 10.1021/acscentsci.0c00680.].

19.
J Am Chem Soc ; 142(50): 20979-20986, 2020 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-33259715

RESUMEN

A user-friendly approach is presented to sidestep the venerable Grignard addition to unactivated ketones to access tertiary alcohols by reversing the polarity of the disconnection. In this work a ketone instead acts as a nucleophile when adding to simple unactivated olefins to accomplish the same overall transformation. The scope of this coupling is broad as enabled using an electrochemical approach, and the reaction is scalable, chemoselective, and requires no precaution to exclude air or water. Multiple applications demonstrate the simplifying nature of the reaction on multistep synthesis, and mechanistic studies point to an intuitive mechanism reminiscent of other chemical reductants such as SmI2 (which cannot accomplish the same reaction).


Asunto(s)
Alquenos/química , Cetonas/química , Catálisis , Transporte de Electrón
20.
ACS Cent Sci ; 6(10): 1789-1799, 2020 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-33145415

RESUMEN

Controlled site-specific bioconjugation through chemical methods to native DNA remains an unanswered challenge. Herein, we report a simple solution to achieve this conjugation through the tactical combination of two recently developed technologies: one for the manipulation of DNA in organic media and another for the chemoselective labeling of alcohols. Reversible adsorption of solid support (RASS) is employed to immobilize DNA and facilitate its transfer into dry acetonitrile. Subsequent reaction with P(V)-based Ψ reagents takes place in high yield with exquisite selectivity for the exposed 3' or 5' alcohols on DNA. This two-stage process, dubbed SENDR for Synthetic Elaboration of Native DNA by RASS, can be applied to a multitude of DNA conformations and sequences with a variety of functionalized Ψ reagents to generate useful constructs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...