Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38106176

RESUMEN

Accurate labeling of specific layers in the human cerebral cortex is crucial for advancing our understanding of neurodevelopmental and neurodegenerative disorders. Leveraging recent advancements in ultra-high resolution ex vivo MRI, we present a novel semi-supervised segmentation model capable of identifying supragranular and infragranular layers in ex vivo MRI with unprecedented precision. On a dataset consisting of 17 whole-hemisphere ex vivo scans at 120 µm, we propose a multi-resolution U-Nets framework (MUS) that integrates global and local structural information, achieving reliable segmentation maps of the entire hemisphere, with Dice scores over 0.8 for supra- and infragranular layers. This enables surface modeling, atlas construction, anomaly detection in disease states, and cross-modality validation, while also paving the way for finer layer segmentation. Our approach offers a powerful tool for comprehensive neuroanatomical investigations and holds promise for advancing our mechanistic understanding of progression of neurodegenerative diseases.

2.
Sci Adv ; 9(41): eadg3844, 2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37824623

RESUMEN

Brain cells are arranged in laminar, nuclear, or columnar structures, spanning a range of scales. Here, we construct a reliable cell census in the frontal lobe of human cerebral cortex at micrometer resolution in a magnetic resonance imaging (MRI)-referenced system using innovative imaging and analysis methodologies. MRI establishes a macroscopic reference coordinate system of laminar and cytoarchitectural boundaries. Cell counting is obtained with a digital stereological approach on the 3D reconstruction at cellular resolution from a custom-made inverted confocal light-sheet fluorescence microscope (LSFM). Mesoscale optical coherence tomography enables the registration of the distorted histological cell typing obtained with LSFM to the MRI-based atlas coordinate system. The outcome is an integrated high-resolution cellular census of Broca's area in a human postmortem specimen, within a whole-brain reference space atlas.


Asunto(s)
Área de Broca , Corteza Cerebral , Humanos , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Mapeo Encefálico
3.
bioRxiv ; 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36993283

RESUMEN

There has been a concerted effort by the neuroimaging community to establish standards for computational methods for data analysis that promote reproducibility and portability. In particular, the Brain Imaging Data Structure (BIDS) specifies a standard for storing imaging data, and the related BIDS App methodology provides a standard for implementing containerized processing environments that include all necessary dependencies to process BIDS datasets using image processing workflows. We present the BrainSuite BIDS App, which encapsulates the core MRI processing functionality of BrainSuite within the BIDS App framework. Specifically, the BrainSuite BIDS App implements a participant-level workflow comprising three pipelines and a corresponding set of group-level analysis workflows for processing the participant-level outputs. The BrainSuite Anatomical Pipeline (BAP) extracts cortical surface models from a T1-weighted (T1w) MRI. It then performs surface-constrained volumetric registration to align the T1w MRI to a labeled anatomical atlas, which is used to delineate anatomical regions of interest in the MRI brain volume and on the cortical surface models. The BrainSuite Diffusion Pipeline (BDP) processes diffusion-weighted imaging (DWI) data, with steps that include coregistering the DWI data to the T1w scan, correcting for geometric image distortion, and fitting diffusion models to the DWI data. The BrainSuite Functional Pipeline (BFP) performs fMRI processing using a combination of FSL, AFNI, and BrainSuite tools. BFP coregisters the fMRI data to the T1w image, then transforms the data to the anatomical atlas space and to the Human Connectome Project's grayordinate space. Each of these outputs can then be processed during group-level analysis. The outputs of BAP and BDP are analyzed using the BrainSuite Statistics in R (bssr) toolbox, which provides functionality for hypothesis testing and statistical modeling. The outputs of BFP can be analyzed using atlas-based or atlas-free statistical methods during group-level processing. These analyses include the application of BrainSync, which synchronizes the time-series data temporally and enables comparison of resting-state or task-based fMRI data across scans. We also present the BrainSuite Dashboard quality control system, which provides a browser-based interface for reviewing the outputs of individual modules of the participant-level pipelines across a study in real-time as they are generated. BrainSuite Dashboard facilitates rapid review of intermediate results, enabling users to identify processing errors and make adjustments to processing parameters if necessary. The comprehensive functionality included in the BrainSuite BIDS App provides a mechanism for rapidly deploying the BrainSuite workflows into new environments to perform large-scale studies. We demonstrate the capabilities of the BrainSuite BIDS App using structural, diffusion, and functional MRI data from the Amsterdam Open MRI Collection's Population Imaging of Psychology dataset.

4.
Neuroimage ; 257: 119304, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35568350

RESUMEN

Optical coherence tomography (OCT) images of ex vivo human brain tissue are corrupted by multiplicative speckle noise that degrades the contrast to noise ratio (CNR) of microstructural compartments. This work proposes a novel algorithm to reduce noise corruption in OCT images that minimizes the penalized negative log likelihood of gamma distributed speckle noise. The proposed method is formulated as a majorize-minimize problem that reduces to solving an iterative regularized least squares optimization. We demonstrate the usefulness of the proposed method by removing speckle in simulated data, phantom data and real OCT images of human brain tissue. We compare the proposed method with state of the art filtering and non-local means based denoising methods. We demonstrate that our approach removes speckle accurately, improves CNR between different tissue types and better preserves small features and edges in human brain tissue.


Asunto(s)
Algoritmos , Tomografía de Coherencia Óptica , Encéfalo/diagnóstico por imagen , Humanos , Fantasmas de Imagen , Relación Señal-Ruido , Tomografía de Coherencia Óptica/métodos
5.
IEEE Trans Biomed Eng ; 69(12): 3645-3656, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35560084

RESUMEN

OBJECTIVE: Serial sectioning optical coherence tomography (OCT) enables accurate volumetric reconstruction of several cubic centimeters of human brain samples. We aimed to identify anatomical features of the ex vivo human brain, such as intraparenchymal blood vessels and axonal fiber bundles, from the OCT data in 3D, using intrinsic optical contrast. METHODS: We developed an automatic processing pipeline to enable characterization of the intraparenchymal microvascular network in human brain samples. RESULTS: We demonstrated the automatic extraction of the vessels down to a 20 µm in diameter using a filtering strategy followed by a graphing representation and characterization of the geometrical properties of microvascular network in 3D. We also showed the ability to extend this processing strategy to extract axonal fiber bundles from the volumetric OCT image. CONCLUSION: This method provides a viable tool for quantitative characterization of volumetric microvascular network as well as the axonal bundle properties in normal and pathological tissues of the ex vivo human brain.


Asunto(s)
Imagenología Tridimensional , Tomografía de Coherencia Óptica , Humanos , Tomografía de Coherencia Óptica/métodos , Imagenología Tridimensional/métodos , Encéfalo/diagnóstico por imagen , Microvasos/diagnóstico por imagen , Técnicas Histológicas
6.
Sci Rep ; 12(1): 363, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35013441

RESUMEN

Optical coherence tomography (OCT) is an emerging 3D imaging technique that allows quantification of intrinsic optical properties such as scattering coefficient and back-scattering coefficient, and has proved useful in distinguishing delicate microstructures in the human brain. The origins of scattering in brain tissues are contributed by the myelin content, neuron size and density primarily; however, no quantitative relationships between them have been reported, which hampers the use of OCT in fundamental studies of architectonic areas in the human brain and the pathological evaluations of diseases. Here, we built a generalized linear model based on Mie scattering theory that quantitatively links tissue scattering to myelin content and neuron density in the human brain. We report a strong linear relationship between scattering coefficient and the myelin content that is retained across different regions of the brain. Neuronal cell body turns out to be a secondary contribution to the overall scattering. The optical property of OCT provides a label-free solution for quantifying volumetric myelin content and neuron cells in the human brain.


Asunto(s)
Encéfalo/diagnóstico por imagen , Vaina de Mielina , Neuroimagen , Neuronas/química , Tomografía de Coherencia Óptica , Adulto , Anciano , Encéfalo/citología , Encéfalo/metabolismo , Cadáver , Femenino , Humanos , Imagenología Tridimensional , Rayos Láser , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Reproducibilidad de los Resultados , Dispersión de Radiación
7.
Brain Connect ; 11(7): 566-583, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34042511

RESUMEN

Background: Structural brain connectivity has been shown to be sensitive to the changes that the brain undergoes during Alzheimer's disease (AD) progression. Methods: In this work, we used our recently proposed structural connectivity quantification measure derived from diffusion magnetic resonance imaging, which accounts for both direct and indirect pathways, to quantify brain connectivity in dementia. We analyzed data from the second phase of Alzheimer's Disease Neuroimaging Initiative and third release in the Open Access Series of Imaging Studies data sets to derive relevant information for the study of the changes that the brain undergoes in AD. We also compared these data sets to the Human Connectome Project data set, as a reference, and eventually validated externally on two cohorts of the European DTI Study in Dementia database. Results: Our analysis shows expected trends of mean conductance with respect to age and cognitive scores, significant age prediction values in aging data, and regional effects centered among subcortical regions, and cingulate and temporal cortices. Discussion: Results indicate that the conductance measure has prediction potential, especially for age, that age and cognitive scores largely overlap, and that this measure could be used to study effects such as anticorrelation in structural connections. Impact statement This work presents a methodology and a set of analyses that open new possibilities in the study of healthy and pathological aging. The methodology used here is sensitive to direct and indirect pathways in deriving brain connectivity measures from diffusion-weighted magnetic resonance imaging, and therefore provides information that many state-of-the-art methods do not account for. As a result, this technique may provide the research community with ways to detect subtle effects of healthy aging and Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Conectoma , Enfermedad de Alzheimer/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Disfunción Cognitiva/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética
8.
Neurophotonics ; 7(4): 045005, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33094126

RESUMEN

Significance: The optical properties of biological samples provide information about the structural characteristics of the tissue and any changes arising from pathological conditions. Optical coherence tomography (OCT) has proven to be capable of extracting tissue's optical properties using a model that combines the exponential decay due to tissue scattering and the axial point spread function that arises from the confocal nature of the detection system, particularly for higher numerical aperture (NA) measurements. A weakness in estimating the optical properties is the inter-parameter cross-talk between tissue scattering and the confocal parameters defined by the Rayleigh range and the focus depth. Aim: In this study, we develop a systematic method to improve the characterization of optical properties with high-NA OCT. Approach: We developed a method that spatially parameterizes the confocal parameters in a previously established model for estimating the optical properties from the depth profiles of high-NA OCT. Results: The proposed parametrization model was first evaluated on a set of intralipid phantoms and then validated using a low-NA objective in which cross-talk from the confocal parameters is negligible. We then utilize our spatially parameterized model to characterize optical property changes introduced by a tissue index matching process using a simple immersion agent, 2,2'-thiodiethonal. Conclusions: Our approach improves the confidence of parameter estimation by reducing the degrees of freedom in the non-linear fitting model.

9.
Proc IEEE Int Symp Biomed Imaging ; 2018: 743-746, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30956753

RESUMEN

The estimation of orientation distribution functions (ODFs) from diffusion MRI data is an important step in diffusion tractography, but existing estimation methods often depend on signal modeling assumptions that are violated by real data, lack theoretical characterization, and/or are only applicable to a small range of q-space sampling patterns. As a result, existing ODF estimation methods may be suboptimal. In this work, we propose a novel ODF estimation approach that learns a linear ODF estimator from training data. The training set contains ideal data samples paired with corresponding ideal ODFs, and the learning procedure reduces to a simple linear least-squares problem. This approach can accommodate arbitrary q-space sampling schemes, can be characterized theoretically, and is theoretically demonstrated to generalize far beyond the training set. The proposed approach is evaluated with simulated and in vivo diffusion data, where it is demonstrated to outperform common alternatives.

10.
Cereb Cortex ; 28(12): 4336-4347, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-29126181

RESUMEN

Several studies comparing adult musicians and nonmusicians have shown that music training is associated with structural brain differences. It is not been established, however, whether such differences result from pre-existing biological traits, lengthy musical training, or an interaction of the two factors, or if comparable changes can be found in children undergoing music training. As part of an ongoing longitudinal study, we investigated the effects of music training on the developmental trajectory of children's brain structure, over two years, beginning at age 6. We compared these children with children of the same socio-economic background but either involved in sports training or not involved in any systematic after school training. We established at the onset that there were no pre-existing structural differences among the groups. Two years later we observed that children in the music group showed (1) a different rate of cortical thickness maturation between the right and left posterior superior temporal gyrus, and (2) higher fractional anisotropy in the corpus callosum, specifically in the crossing pathways connecting superior frontal, sensory, and motor segments. We conclude that music training induces macro and microstructural brain changes in school-age children, and that those changes are not attributable to pre-existing biological traits.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Música , Práctica Psicológica , Estimulación Acústica , Mapeo Encefálico , Niño , Imagen de Difusión por Resonancia Magnética , Femenino , Humanos , Estudios Longitudinales , Imagen por Resonancia Magnética , Masculino
11.
Neuroimage ; 161: 206-218, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28830765

RESUMEN

The data measured in diffusion MRI can be modeled as the Fourier transform of the Ensemble Average Propagator (EAP), a probability distribution that summarizes the molecular diffusion behavior of the spins within each voxel. This Fourier relationship is potentially advantageous because of the extensive theory that has been developed to characterize the sampling requirements, accuracy, and stability of linear Fourier reconstruction methods. However, existing diffusion MRI data sampling and signal estimation methods have largely been developed and tuned without the benefit of such theory, instead relying on approximations, intuition, and extensive empirical evaluation. This paper aims to address this discrepancy by introducing a novel theoretical signal processing framework for diffusion MRI. The new framework can be used to characterize arbitrary linear diffusion estimation methods with arbitrary q-space sampling, and can be used to theoretically evaluate and compare the accuracy, resolution, and noise-resilience of different data acquisition and parameter estimation techniques. The framework is based on the EAP, and makes very limited modeling assumptions. As a result, the approach can even provide new insight into the behavior of model-based linear diffusion estimation methods in contexts where the modeling assumptions are inaccurate. The practical usefulness of the proposed framework is illustrated using both simulated and real diffusion MRI data in applications such as choosing between different parameter estimation methods and choosing between different q-space sampling schemes.


Asunto(s)
Imagen de Difusión por Resonancia Magnética/métodos , Análisis de Fourier , Procesamiento de Imagen Asistido por Computador/métodos , Modelos Teóricos , Procesamiento de Señales Asistido por Computador , Humanos
12.
IEEE Trans Med Imaging ; 34(10): 2191-202, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25935028

RESUMEN

The statistics of many MR magnitude images are described by the non-central chi (NCC) family of probability distributions, which includes the Rician distribution as a special case. These distributions have complicated negative log-likelihoods that are nontrivial to optimize. This paper describes a novel majorize-minimize framework for NCC data that allows penalized maximum likelihood estimates to be obtained by solving a series of much simpler regularized least-squares surrogate problems. The proposed framework is general and can be useful in a range of applications. We illustrate the potential advantages of the framework with real and simulated data in two contexts: 1) MR image denoising and 2) diffusion profile estimation in high angular resolution diffusion MRI. The proposed approach is shown to yield improved results compared to methods that model the noise statistics inaccurately and faster computation relative to commonly-used nonlinear optimization techniques.


Asunto(s)
Algoritmos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Modelos Estadísticos , Encéfalo/anatomía & histología , Encéfalo/fisiología , Simulación por Computador , Difusión , Humanos , Fantasmas de Imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...