Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Haematologica ; 109(6): 1893-1908, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38124661

RESUMEN

REIIBP is a lysine methyltransferase aberrantly expressed through alternative promoter usage of NSD2 locus in t(4;14)-translocated multiple myeloma (MM). Clinically, t(4;14) translocation is an adverse prognostic factor found in approximately 15% of MM patients. The contribution of REIIBP relative to other NSD2 isoforms as a dependency gene in t(4;14)-translocated MM remains to be evaluated. Here, we demonstrated that despite homology with NSD2, REIIBP displayed distinct substrate specificity by preferentially catalyzing H3K4me3 and H3K27me3, with little activity on H3K36me2. Furthermore, REIIBP was regulated through microRNA by EZH2 in a Dicer-dependent manner, exemplifying a role of REIIBP in SET-mediated H3K27me3. Chromatin immunoprecipitation sequencing revealed chromatin remodeling characterized by changes in genome-wide and loci-specific occupancy of these opposing histone marks, allowing a bidirectional regulation of its target genes. Transcriptomics indicated that REIIBP induced a pro-inflammatory gene signature through upregulation of TLR7, which in turn led to B-cell receptor-independent activation of BTK and driving NFkB-mediated production of cytokines such as IL-6. Activation of this pathway is targetable using Ibrutinib and partially mitigated bortezomib resistance in a REIIBP xenograft model. Mechanistically, REIIBP upregulated TLR7 through eIF3E, and this relied on eIF3E RNA-binding function instead of its canonical protein synthesis activity, as demonstrated by direct binding to the 3'UTR of TLR7 mRNA. Altogether, we provided a rationale that co-existence of different NSD2 isoforms induced diversified oncogenic programs that should be considered in the strategies for t(4;14)-targeted therapy.


Asunto(s)
Cromosomas Humanos Par 14 , Epigénesis Genética , N-Metiltransferasa de Histona-Lisina , Mieloma Múltiple , Translocación Genética , Humanos , Mieloma Múltiple/genética , Mieloma Múltiple/patología , Mieloma Múltiple/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Animales , Ratones , Cromosomas Humanos Par 14/genética , Cromosomas Humanos Par 4/genética , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral , Fenotipo , Inflamación/genética , Inflamación/metabolismo , Histonas/metabolismo , Proteínas Represoras
2.
J Hum Kinet ; 86: 17-29, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37181264

RESUMEN

The aim of this study was to compare the muscle activity of the gluteus medius (GMe), gluteus maximus (GMa), biceps femoris (BF), vastus lateralis (VL), vastus medialis (VM) and erector spinae (ES) as well as medial knee displacement (MKD) while using varying stiffness resistance bands (red: 1.68 kg; black: 3.31 kg; gold: 6.44 kg) during a barbell back squat (BBS) among males and females. A total of 23 (females: 11) resistance trained people were recruited for this study. Muscle activity was measured using electromyography, and motion capture cameras tracked lower-limb kinematics and MKD. Three resistance bands were placed at the distal end of the femur while performing a BBS at their 85% repetition maximum (RM). Parametric and non-parametric statistical analyses were conducted with the alpha level of 0.05. The gold resistance band resulted in a smaller knee-width-index value (i.e., greater MKD) compared to other bands (p < 0.01). Males exhibited less MKD compared to females during the BBS for each resistance band (p = 0.04). Males produced greater VL activity when using the black and gold resistance bands during the BBS (p = 0.03). When using a gold resistance band, the GMe muscle activation was higher compared to other resistance bands (p < 0.01). VM muscle activity was reduced when using a gold resistance band compared to no band condition (p < 0.01). BF (p = 0.39) and ES (p = 0.88) muscle activity did not change when using different resistance bands. As a result, females may be at a biomechanical disadvantage when using resistance bands compared to males while performing the BBS hindering them from optimal performance.

3.
Elife ; 112022 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-35834310

RESUMEN

The hallmark event of the canonical transforming growth factor ß (TGFß) family signaling is the assembly of the Smad-complex, consisting of the common Smad, Smad4, and phosphorylated receptor-regulated Smads. How the Smad-complex is assembled and regulated is still unclear. Here, we report that active Arl15, an Arf-like small G protein, specifically binds to the MH2 domain of Smad4 and colocalizes with Smad4 at the endolysosome. The binding relieves the autoinhibition of Smad4, which is imposed by the intramolecular interaction between its MH1 and MH2 domains. Activated Smad4 subsequently interacts with phosphorylated receptor-regulated Smads, forming the Smad-complex. Our observations suggest that Smad4 functions as an effector and a GTPase activating protein (GAP) of Arl15. Assembly of the Smad-complex enhances the GAP activity of Smad4 toward Arl15, therefore dissociating Arl15 before the nuclear translocation of the Smad-complex. Our data further demonstrate that Arl15 positively regulates the TGFß family signaling.


Asunto(s)
Transactivadores , Factor de Crecimiento Transformador beta , Transducción de Señal , Proteína smad3/metabolismo , Proteína Smad4/metabolismo , Transactivadores/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
4.
Nat Cell Biol ; 24(6): 928-939, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35618746

RESUMEN

Most mammalian genes generate messenger RNAs with variable untranslated regions (UTRs) that are important post-transcriptional regulators. In cancer, shortening at 3' UTR ends via alternative polyadenylation can activate oncogenes. However, internal 3' UTR splicing remains poorly understood as splicing studies have traditionally focused on protein-coding alterations. Here we systematically map the pan-cancer landscape of 3' UTR splicing and present this in SpUR ( http://www.cbrc.kaust.edu.sa/spur/home/ ). 3' UTR splicing is widespread, upregulated in cancers, correlated with poor prognosis and more prevalent in oncogenes. We show that antisense oligonucleotide-mediated inhibition of 3' UTR splicing efficiently reduces oncogene expression and impedes tumour progression. Notably, CTNNB1 3' UTR splicing is the most consistently dysregulated event across cancers. We validate its upregulation in hepatocellular carcinoma and colon adenocarcinoma, and show that the spliced 3' UTR variant is the predominant contributor to its oncogenic functions. Overall, our study highlights the importance of 3' UTR splicing in cancer and may launch new avenues for RNA-based anti-cancer therapeutics.


Asunto(s)
Adenocarcinoma , Neoplasias del Colon , Regiones no Traducidas 3'/genética , Adenocarcinoma/genética , Empalme Alternativo/genética , Animales , Carcinogénesis/genética , Neoplasias del Colon/genética , Mamíferos , Regulación hacia Arriba
5.
J Invest Dermatol ; 142(4): 1206-1216.e8, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34710388

RESUMEN

Nonhealing wounds are a major area of unmet clinical need remaining problematic to treat. Improved understanding of prohealing mechanisms is invaluable. The enzyme arginase1 (ARG1) is involved in prohealing responses, with its role in macrophages best characterized. ARG1 is also expressed by keratinocytes; however, ARG1 function in these critical wound repair cells is not understood. We characterized ARG1 expression in keratinocytes during normal cutaneous repair and reveal de novo temporal and spatial expression at the epidermal wound edge. Interestingly, epidermal ARG1 expression was decreased in both human and murine delayed healing wounds. We therefore generated a keratinocyte-specific ARG1-null mouse model (K14-cre;Arg1fl/fl) to explore arginase function. Wound repair, linked to changes in keratinocyte proliferation, migration, and differentiation, was significantly delayed in K14-cre;Arg1fl/fl mice. Similarly, using the arginase inhibitor N(omega)-hydroxy-nor-L-arginine, human in vitro and ex vivo models further confirmed this finding, revealing the importance of the downstream polyamine pathway in repair. Indeed, restoring the balance in ARG1 activity through the addition of putrescine proved beneficial in wound closure. In summary, we show that epidermal ARG1 plays, to our knowledge, a previously unreported intrinsic role in cutaneous healing, highlighting epidermal ARG1 and the downstream mediators as potential targets for the therapeutic modulation of wound repair.


Asunto(s)
Arginasa , Anomalías Cutáneas , Animales , Arginasa/genética , Arginasa/metabolismo , Epidermis/metabolismo , Queratinocitos/metabolismo , Macrófagos/metabolismo , Ratones , Ratones Noqueados , Piel/metabolismo , Anomalías Cutáneas/metabolismo
6.
Front Mol Biosci ; 8: 773866, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34778380

RESUMEN

Arginase (ARG) represents an important evolutionarily conserved enzyme that is expressed by multiple cell types in the skin. Arg acts as the mediator of the last step of the urea cycle, thus providing protection against excessive ammonia under homeostatic conditions through the production of L-ornithine and urea. L-ornithine represents the intersection point between the ARG-dependent pathways and the urea cycle, therefore contributing to cell detoxification, proliferation and collagen production. The ARG pathways help balance pro- and anti-inflammatory responses in the context of wound healing. However, local and systemic dysfunctionalities of the ARG pathways have been shown to contribute to the hindrance of the healing process and the occurrence of chronic wounds. This review discusses the functions of ARG in macrophages and fibroblasts while detailing the deleterious implications of a malfunctioning ARG enzyme in chronic skin conditions such as leg ulcers. The review also highlights how ARG links with the microbiota and how this impacts on infected chronic wounds. Lastly, the review depicts chronic wound treatments targeting the ARG pathway, alongside future diagnosis and treatment perspectives.

7.
J Invest Dermatol ; 141(9): 2178-2188.e6, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33984347

RESUMEN

Maintaining tissue homeostasis depends on a balance between cell proliferation, differentiation, and apoptosis. Within the epidermis, the levels of the polyamines putrescine, spermidine, and spermine are altered in many different skin conditions, yet their role in epidermal tissue homeostasis is poorly understood. We identify the polyamine regulator, Adenosylmethionine decarboxylase 1 (AMD1), as a crucial regulator of keratinocyte (KC) differentiation. AMD1 protein is upregulated on differentiation and is highly expressed in the suprabasal layers of the human epidermis. During KC differentiation, elevated AMD1 promotes decreased putrescine and increased spermine levels. Knockdown or inhibition of AMD1 results in reduced spermine levels and inhibition of KC differentiation. Supplementing AMD1-knockdown KCs with exogenous spermidine or spermine rescued aberrant differentiation. We show that the polyamine shift is critical for the regulation of key transcription factors and signaling proteins that drive KC differentiation, including KLF4 and ZNF750. These findings show that human KCs use controlled changes in polyamine levels to modulate gene expression to drive cellular behavior changes. Modulation of polyamine levels during epidermal differentiation could impact skin barrier formation or can be used in the treatment of hyperproliferative skin disorders.


Asunto(s)
Adenosilmetionina Descarboxilasa/metabolismo , Células Epidérmicas/metabolismo , Espermina/metabolismo , Adenosilmetionina Descarboxilasa/genética , Animales , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Células Epidérmicas/patología , Técnicas de Silenciamiento del Gen , Humanos , Factor 4 Similar a Kruppel/metabolismo , Ratones , Poliaminas/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Regulación hacia Arriba
10.
Nat Biotechnol ; 39(3): 336-346, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33106685

RESUMEN

Current methods for determining RNA structure with short-read sequencing cannot capture most differences between distinct transcript isoforms. Here we present RNA structure analysis using nanopore sequencing (PORE-cupine), which combines structure probing using chemical modifications with direct long-read RNA sequencing and machine learning to detect secondary structures in cellular RNAs. PORE-cupine also captures global structural features, such as RNA-binding-protein binding sites and reactivity differences at single-nucleotide variants. We show that shared sequences in different transcript isoforms of the same gene can fold into different structures, highlighting the importance of long-read sequencing for obtaining phase information. We also demonstrate that structural differences between transcript isoforms of the same gene lead to differences in translation efficiency. By revealing isoform-specific RNA structure, PORE-cupine will deepen understanding of the role of structures in controlling gene regulation.


Asunto(s)
Secuenciación de Nanoporos/métodos , Conformación de Ácido Nucleico , ARN/química , Análisis de Secuencia de ARN/métodos , Células Madre Embrionarias Humanas/metabolismo , Humanos , Isomerismo , ARN/genética , Tetrahymena/genética , Transcriptoma
11.
J Invest Dermatol ; 140(10): 2032-2040.e1, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32119868

RESUMEN

Hyperpigmentary conditions can arise when melanogenesis in the epidermis is misregulated. Understanding the pathways underlying melanogenesis is essential for the development of effective treatments. Here, we report that a group of metabolites called polyamines are important in the control of melanogenesis in human skin. Polyamines are cationic molecules present in all cells and are essential for cellular function. We report that polyamine regulator ODC1 is upregulated in melanocytes from melasma lesional skin. We report that the polyamine putrescine can promote pigmentation in human skin explants and primary normal human epidermal melanocytes through induction of tyrosinase which is rate-limiting for the synthesis of melanin. Putrescine supplementation on normal human epidermal melanocytes results in the activation of polyamine catabolism, which results in increased intracellular H2O2. Polyamine catabolism is also increased in human skin explants that have been treated with putrescine. We further report that inhibition of polyamine catabolism prevents putrescine-induced promotion of tyrosinase levels and pigmentation in normal human epidermal melanocytes, showing that polyamine catabolism is responsible for the putrescine induction of melanogenesis. Our data showing that putrescine promotes pigmentation has important consequences for hyperpigmented and hypopigmented conditions. Further understanding of how polyamines control epidermal pigmentation could open the door for the development of new therapeutics.


Asunto(s)
Epidermis/efectos de los fármacos , Melaninas/biosíntesis , Putrescina/farmacología , Poliaminas Biogénicas/metabolismo , Células Cultivadas , Transportadores de Ácidos Dicarboxílicos/fisiología , Epidermis/metabolismo , Humanos , Melanocitos/efectos de los fármacos , Melanocitos/metabolismo , Persona de Mediana Edad , Proteínas de Transporte de Membrana Mitocondrial/fisiología , Putrescina/análogos & derivados , Pigmentación de la Piel/efectos de los fármacos
12.
Methods Mol Biol ; 2109: 55-65, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31161578

RESUMEN

The study of skin pigmentation requires determining the rate of melanin production in melanocytes and quantifying the rate of melanosome transfer to keratinocytes. Here, we describe a method to quantify melanosome transfer using immunofluorescence microscopy coupled with automated image analysis of in vitro human melanocytes and keratinocytes in co-culture. In this method, the number of melanin capped keratinocyte nuclei is quantified.


Asunto(s)
Queratinocitos/citología , Melanocitos/citología , Melanosomas/trasplante , Células Cultivadas , Técnicas de Cocultivo , Humanos , Queratinocitos/metabolismo , Melaninas/metabolismo , Melanocitos/metabolismo , Melanosomas/metabolismo , Microscopía Fluorescente , Interpretación de Imagen Radiográfica Asistida por Computador
13.
J Invest Dermatol ; 138(12): 2653-2665, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29906410

RESUMEN

Wound healing is a dynamic process involving gene-expression changes that drive re-epithelialization. Here, we describe an essential role for polyamine regulator AMD1 in driving cell migration at the wound edge. The polyamines, putrescine, spermidine, and spermine are small cationic molecules that play essential roles in many cellular processes. We demonstrate that AMD1 is rapidly upregulated following wounding in human skin biopsies. Knockdown of AMD1 with small hairpin RNAs causes a delay in cell migration that is rescued by the addition of spermine. We further show that spermine can promote cell migration in keratinocytes and in human ex vivo wounds, where it significantly increases epithelial tongue migration. Knockdown of AMD1 prevents the upregulation of urokinase-type plasminogen activator/urokinase-type plasminogen activator receptor on wounding and results in a failure in actin cytoskeletal reorganization at the wound edge. We demonstrate that keratinocytes respond to wounding by modulating polyamine regulator AMD1 in order to regulate downstream gene expression and promote cell migration. This article highlights a previously unreported role for the regulation of polyamine levels and ratios in cellular behavior and fate.


Asunto(s)
Adenosilmetionina Descarboxilasa/metabolismo , Movimiento Celular/genética , Epidermis/fisiología , Queratinocitos/fisiología , Cicatrización de Heridas , Heridas y Lesiones/metabolismo , Citoesqueleto de Actina/metabolismo , Adenosilmetionina Descarboxilasa/genética , Biopsia , Señalización del Calcio , Células Cultivadas , Humanos , ARN Interferente Pequeño/genética , Repitelización/genética , Espermina/metabolismo , Regulación hacia Arriba , Heridas y Lesiones/genética
14.
Stem Cells ; 36(8): 1170-1178, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29644784

RESUMEN

Embryonic stem cells have the ability to self-renew or differentiate and these processes are under tight control. We previously reported that the polyamine regulator AMD1 is critical for embryonic stem cell self-renewal. The polyamines putrescine, spermidine, and spermine are essential organic cations that play a role in a wide array of cellular processes. Here, we explore the essential role of the polyamines in the promotion of self-renewal and identify a new stem cell regulator that acts downstream of the polyamines: MINDY1. MINDY1 protein levels are high in embryonic stem cells (ESCs) and are dependent on high polyamine levels. Overexpression of MINDY1 can promote ESC self-renewal in the absence of the usually essential cytokine Leukemia Inhibitory Factor (LIF). MINDY1 protein is prenylated and this modification is required for its ability to promote self-renewal. We go on to show that Mindy1 RNA is targeted for repression by mir-710 during Neural Precursor cell differentiation. Taken together, these data demonstrate that high polyamine levels are required for ESC self-renewal and that they function, in part, through promotion of high MINDY1 levels. Stem Cells 2018;36:1170-1178.


Asunto(s)
Autorrenovación de las Células , Enzimas Desubicuitinizantes/metabolismo , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Poliaminas/metabolismo , Animales , Secuencia de Bases , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Autorrenovación de las Células/efectos de los fármacos , Eflornitina/farmacología , Células Madre Embrionarias/efectos de los fármacos , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Células HeLa , Humanos , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/metabolismo , Transporte de Proteínas/efectos de los fármacos
15.
Mol Plant ; 10(11): 1387-1399, 2017 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-28965832

RESUMEN

5-Methylcytosine (m5C) is a well-characterized DNA modification, and is also predominantly reported in abundant non-coding RNAs in both prokaryotes and eukaryotes. However, the distribution and biological functions of m5C in plant mRNAs remain largely unknown. Here, we report transcriptome-wide profiling of RNA m5C in Arabidopsis thaliana by applying m5C RNA immunoprecipitation followed by a deep-sequencing approach (m5C-RIP-seq). LC-MS/MS and dot blot analyses reveal a dynamic pattern of m5C mRNA modification in various tissues and at different developmental stages. m5C-RIP-seq analysis identified 6045 m5C peaks in 4465 expressed genes in young seedlings. We found that m5C is enriched in coding sequences with two peaks located immediately after start codons and before stop codons, and is associated with mRNAs with low translation activity. We further demonstrated that an RNA (cytosine-5)-methyltransferase, tRNA-specific methyltransferase 4B (TRM4B), exhibits m5C RNA methyltransferase activity. Mutations in TRM4B display defects in root development and decreased m5C peaks. TRM4B affects the transcript levels of the genes involved in root development, which is positively correlated with their mRNA stability and m5C levels. Our results suggest that m5C in mRNA is a new epitranscriptome marker inArabidopsis, and that regulation of this modification is an integral part of gene regulatory networks underlying plant development.


Asunto(s)
5-Metilcitosina/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/genética , Metilación , Raíces de Plantas/metabolismo , ARN Mensajero/genética
16.
J Mol Cell Cardiol ; 112: 27-39, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28865712

RESUMEN

RATIONALE: Myocardial infarction (MI) triggers a dynamic microRNA response with the potential of yielding therapeutic targets. OBJECTIVE: We aimed to identify novel aberrantly expressed cardiac microRNAs post-MI with potential roles in adverse remodeling in a rat model, and to provide post-ischemic therapeutic inhibition of a candidate pathological microRNA in vivo. METHODS AND RESULTS: Following microRNA array profiling in rat hearts 2 and 14days post-MI, we identified a time-dependent up-regulation of miR-31 compared to sham-operated rats. A progressive increase of miR-31 (up to 91.4±11.3 fold) was detected in the infarcted myocardium by quantitative real-time PCR. Following target prediction analysis, reporter gene assays confirmed that miR-31 targets the 3´UTR of cardiac troponin-T (Tnnt2), E2F transcription factor 6 (E2f6), mineralocorticoid receptor (Nr3c2) and metalloproteinase inhibitor 4 (Timp4) mRNAs. In vitro, hypoxia and oxidative stress up-regulated miR-31 and suppressed target genes in cardiac cell cultures, whereas LNA-based oligonucleotide inhibition of miR-31 (miR-31i) reversed its repressive effect on target mRNAs. Therapeutic post-ischemic administration of miR-31i in rats silenced cardiac miR-31 and enhanced expression of target genes, while preserving cardiac structure and function at 2 and 4weeks post-MI. Left ventricular ejection fraction (EF) improved by 10% (from day 2 to 30 post-MI) in miR-31i-treated rats, whereas controls receiving scrambled LNA inhibitor or placebo incurred a 17% deterioration in EF. miR-31i decreased end-diastolic pressure and infarct size; attenuated interstitial fibrosis in the remote myocardium and enhanced cardiac output. CONCLUSION: miR-31 induction after MI is deleterious to cardiac function while its therapeutic inhibition in vivo ameliorates cardiac dysfunction and prevents the development of post-ischemic adverse remodeling.


Asunto(s)
MicroARNs/metabolismo , Isquemia Miocárdica/genética , Remodelación Ventricular/genética , Animales , Secuencia de Bases , Hipoxia de la Célula/genética , Línea Celular , Perfilación de la Expresión Génica , Silenciador del Gen/efectos de los fármacos , Masculino , Isquemia Miocárdica/patología , Miocardio/metabolismo , Oligonucleótidos/farmacología , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/genética , Ratas , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética , Remodelación Ventricular/efectos de los fármacos
17.
Sci Rep ; 6: 28112, 2016 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-27346849

RESUMEN

The high proliferation rate of embryonic stem cells (ESCs) is thought to arise partly from very low expression of p21. However, how p21 is suppressed in ESCs has been unclear. We found that p53 binds to the p21 promoter in human ESCs (hESCs) as efficiently as in differentiated human mesenchymal stem cells, however it does not promote p21 transcription in hESCs. We observed an enrichment for both the repressive histone H3K27me3 and activating histone H3K4me3 chromatin marks at the p21 locus in hESCs, suggesting it is a suppressed, bivalent domain which overrides activation by p53. Reducing H3K27me3 methylation in hESCs rescued p21 expression, and ectopic expression of p21 in hESCs triggered their differentiation. Further, we uncovered a subset of bivalent promoters bound by p53 in hESCs that are similarly induced upon differentiation in a p53-dependent manner, whereas p53 promotes the transcription of other target genes which do not show an enrichment of H3K27me3 in ESCs. Our studies reveal a unique epigenetic strategy used by ESCs to poise undesired p53 target genes, thus balancing the maintenance of pluripotency in the undifferentiated state with a robust response to differentiation signals, while utilizing p53 activity to maintain genomic stability and homeostasis in ESCs.


Asunto(s)
Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Histonas/metabolismo , Células Madre Embrionarias Humanas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Secuencia de Bases , Diferenciación Celular , Línea Celular , Epigénesis Genética , Técnica del Anticuerpo Fluorescente Indirecta , Células Madre Embrionarias Humanas/citología , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Metilación , Regiones Promotoras Genéticas/genética , Unión Proteica , Estabilidad Proteica , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Activación Transcripcional , Proteína p53 Supresora de Tumor/antagonistas & inhibidores , Proteína p53 Supresora de Tumor/genética
18.
RNA ; 22(6): 867-82, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27090285

RESUMEN

Recent footprinting studies have made the surprising observation that long noncoding RNAs (lncRNAs) physically interact with ribosomes. However, these findings remain controversial, and the overall proportion of cytoplasmic lncRNAs involved is unknown. Here we make a global, absolute estimate of the cytoplasmic and ribosome-associated population of stringently filtered lncRNAs in a human cell line using polysome profiling coupled to spike-in normalized microarray analysis. Fifty-four percent of expressed lncRNAs are detected in the cytoplasm. The majority of these (70%) have >50% of their cytoplasmic copies associated with polysomal fractions. These interactions are lost upon disruption of ribosomes by puromycin. Polysomal lncRNAs are distinguished by a number of 5' mRNA-like features, including capping and 5'UTR length. On the other hand, nonpolysomal "free cytoplasmic" lncRNAs have more conserved promoters and a wider range of expression across cell types. Exons of polysomal lncRNAs are depleted of endogenous retroviral insertions, suggesting a role for repetitive elements in lncRNA localization. Finally, we show that blocking of ribosomal elongation results in stabilization of many associated lncRNAs. Together these findings suggest that the ribosome is the default destination for the majority of cytoplasmic long noncoding RNAs and may play a role in their degradation.


Asunto(s)
Citoplasma/metabolismo , ARN Largo no Codificante/metabolismo , Ribosomas/metabolismo , Regiones no Traducidas 5' , Sitios de Unión , Células HeLa , Humanos , Hidrólisis , Hibridación Fluorescente in Situ , Células K562
19.
PLoS One ; 11(1): e0143235, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26799392

RESUMEN

The presence of multiple variants for many mRNAs is a major contributor to protein diversity. The processing of these variants is tightly controlled in a cell-type specific manner and has a significant impact on gene expression control. Here we investigate the differential translation rates of individual mRNA variants in embryonic stem cells (ESCs) and in ESC derived Neural Precursor Cells (NPCs) using polysome profiling coupled to RNA sequencing. We show that there are a significant number of detectable mRNA variants in ESCs and NPCs and that many of them show variant specific translation rates. This is correlated with differences in the UTRs of the variants with the 5'UTR playing a predominant role. We suggest that mRNA variants that contain alternate UTRs are under different post-transcriptional controls. This is likely due to the presence or absence of miRNA and protein binding sites that regulate translation rate. This highlights the importance of addressing translation rate when using mRNA levels as a read out of protein abundance. Additional analysis shows that many annotated non-coding mRNAs are present on the polysome fractions in ESCs and NPCs. We believe that the use of polysome fractionation coupled to RNA sequencing is a useful method for analysis of the translation state of many different RNAs in the cell.


Asunto(s)
Células Madre Embrionarias/fisiología , Biosíntesis de Proteínas , ARN Mensajero/genética , Regiones no Traducidas 3' , Regiones no Traducidas 5' , Animales , Diferenciación Celular , Células Cultivadas , Células Madre Embrionarias/citología , Regulación del Desarrollo de la Expresión Génica , Factor II del Crecimiento Similar a la Insulina/genética , Ratones , Células-Madre Neurales/fisiología , Polirribosomas/genética , Polirribosomas/metabolismo , Empalme del ARN , Ribonucleoproteínas/genética , Análisis de Secuencia de ARN
20.
Methods Mol Biol ; 1341: 143-55, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26084596

RESUMEN

Regulation of gene expression is essential to enable embryonic stem cells (ESCs) to either self-renew or to differentiate. Translational regulation of mRNA plays a major role in regulating gene expression and has been shown to be important for ESC differentiation. Sucrose gradients can be used to separate mRNAs based on the number of associated ribosomes and this can be used as a readout of the rate of translation. Following centrifugation through a sucrose gradient, mRNAs can be recovered, purified, and analyzed by quantitative real-time polymerase chain reaction (qRT-PCR) to determine their ribosomal load in different cell states. Here, we describe how to differentiate mouse ESCs to Neural Precursor Cells (NPCs) and analyze the rate of translation of individual mRNAs by qRT-PCR following polysome fractionation.


Asunto(s)
Células Madre Embrionarias de Ratones/metabolismo , Células-Madre Neurales/citología , Biosíntesis de Proteínas , ARN Mensajero/genética , Animales , Técnicas de Cultivo de Célula/métodos , Diferenciación Celular , Fraccionamiento Celular/métodos , Centrifugación por Gradiente de Densidad/métodos , Ratones , Células Madre Embrionarias de Ratones/citología , Células-Madre Neurales/metabolismo , Polirribosomas/genética , ARN Mensajero/aislamiento & purificación , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...