Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Chem Biol Drug Des ; 99(3): 391-397, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34873847

RESUMEN

Considering the emergence of antifungal resistance on Sporothrix brasiliensis, we aimed to assess new benzylidene-carbonyl compounds against feline-borne S. brasiliensis isolates. The compounds were designed as bioisosteres from previously reported benzylidene-ketones generating the p-coumaric (1), cinnamic (2), p-methoxycinnamic (3) and caffeic acid (4) analogues. The corresponding compounds were tested against feline isolates of S. brasiliensis with sensitivity (n = 4) and resistance (n = 5) to itraconazole (ITZ), following the M38-A2 protocol (CLSI, Reference method for broth dilution antifungal susceptibility testing of filamentous fungi M38-A2 Guideline, 2008). Eleven analogues showed activity against all fungal strains with minimum inhibitory concentrations (MIC) ≤1 mg/ml (1a-d, 2e, 3b, 3e, 4, 4a and 5e) and fungicidal concentrations (MFC) ≤1 mg/ml (1b, 1d, 3e and 4a), whereas 3 was the less active with both MIC and MFC values above 1 mg/ml. Compound 3e (4-methoxy-N-butylcinnamamide) was the most potent (MICrange 0.08-0.16 mg/ml; MFCrange 0.32-0.64 mg/ml) from the set, suggesting a different role of the substituents in ester and amide derivatives. The designed compounds proved to be important prototypes with improved drug-likeness to achieve compounds with higher activity against ITZ-resistant S. brasiliensis.


Asunto(s)
Antifúngicos/farmacología , Compuestos de Bencilideno/química , Cetonas/química , Sporothrix/efectos de los fármacos , Antifúngicos/síntesis química , Antifúngicos/química , Cumarinas/síntesis química , Cumarinas/química , Cumarinas/farmacología , Itraconazol/síntesis química , Itraconazol/química , Itraconazol/farmacología , Pruebas de Sensibilidad Microbiana , Relación Estructura-Actividad
2.
Folia Microbiol (Praha) ; 65(6): 1033-1038, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32821987

RESUMEN

We evaluated the antifungal activity of benzylidene-carbonyl compounds (LINS03) based on the structure of gibbilimbol from Piper malacophyllum Linn. Five analogues (1-5) were synthetized following a classic aldol condensation between an aromatic aldehyde and a ketone, under basic conditions. These were tested against itraconazole-susceptible (n = 3) and itraconazole-resistant (n = 5) isolates of Sporothrix brasiliensis by M38-A2 guidelines of CLSI. All of them were fungistatic (MIC ranged of 0.11-0.22 mg/mL (1); 0.08-0.17 mg/mL (2); 0.05-0.1 mg/mL (3); 0.04-0.33 mg/mL (4); and 0.04-0.3 mg/mL (5)), highlighting compounds 2 and 3. As fungicidal, compounds 1 and 2 were highlighted (MFC ranged of 0.22-0.89 mg/mL and 0.08-1.35 mg/mL, respectively), compared with the remaining (0.77-> 3.08 mg/mL (3); 0.08-> 2.6 mg/mL (4); and 0.59-> 2.37 mg/mL (5)). The inhibitory activity was related to the benzylidene-carbonyl, whereas the phenol group and the low chain homolog seems to contribute to some extent to the fungicidal effect. Compound 2 highlighted due to the considerable fungistatic and fungicidal activities, including itraconazole-resistant Sporothrix brasiliensis. These findings support the potential usefulness of benzylidene-carbonyl compounds as promising prototypes for the development of antifungal against sporotrichosis by Sporothrix brasiliensis, including against itraconazole-resistant isolates.


Asunto(s)
Antifúngicos/farmacología , Compuestos de Bencilideno/farmacología , Farmacorresistencia Fúngica/efectos de los fármacos , Itraconazol/farmacología , Sporothrix/efectos de los fármacos , Esporotricosis/microbiología , Humanos , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana/efectos de los fármacos , Sporothrix/aislamiento & purificación , Esporotricosis/tratamiento farmacológico
3.
Bioorg Chem ; 103: 104108, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32750608

RESUMEN

p-Coumaric acid is a known inhibitor of tyrosinase, an enzyme involved in the initial steps of the melanin synthesis in human and other species. However, its low lipophilicity impairs its penetration through skin and efficacy as antimelanogenic agent indeed. Accordingly, this paper reports the assessment of several coumaric acid derivatives as tyrosinase inhibitors and antimelanogenic agents in in vitro, in silico and ex vivo assays. The compounds were designed with modifications in the aromatic and acid moieties of p-coumaric acid, being the coumarate esters the most promising derivatives. The compounds showed higher tyrosinase inhibitory activity (pIC50 3.7-4.2) than the parent acid, being compounds 1d, 1e and 1f the most potent inhibitors. Docking analysis showed that these esters are competitive inhibitors per se, and act independently of a redox mechanism as suggested by DPPH assays. Moreover, the esters showed efficacy in reducing the melanin deposition in human skin fragments at 0.1% concentration, especially compound 1e. In summary, there is an important equilibria between tyrosinase affinity and lipophilicity that must be considered to get effective antimelanogenic agents with adequate permeability in the skin.


Asunto(s)
Ácidos Cumáricos/farmacología , Inhibidores Enzimáticos/farmacología , Monofenol Monooxigenasa/antagonistas & inhibidores , Ácidos Cumáricos/síntesis química , Ácidos Cumáricos/química , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Melaninas/análisis , Simulación del Acoplamiento Molecular , Estructura Molecular , Monofenol Monooxigenasa/metabolismo , Relación Estructura-Actividad
4.
Eur J Pharm Sci ; 153: 105473, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32693012

RESUMEN

Fungal infections are on the rise, since the imunocompromised population is increasing due to AIDS/HIV, organ transplant and chemotherapy. Many environmental and pathogenic fungi are able to accomplish melanin biosynthesis as a virulence factor to promote host invasion. Melanized cells are more resistant to radiation, oxidative and osmotic stresses; also melanin confers an advantage in vivo, since melanized cells are more resistant to phagocytic engulfment and oxidative stress caused by the host defense cells and by some antifungal drugs, such as fluconazole (FCZ) and amphotericin B (AmB). Brown, red or black melanin pigments can be produced by the polyketide pathway (DHN-melanin) or from dihydroxyphenols, such as L-DOPA (L-3,4-dihydroxyphenylalanine) and L-tyrosine by polyphenoloxidases. Among several pathogenic fungi, Cryptococcus neoformans is a melanized yeast that causes pneumonia and meningoencephalitis in immunocompromised patients. The knockout of the laccase genes or other interruptions on melanin biosynthetic pathway generates cryptococcal strains with attenuated virulence in an animal model. In this study 16 analogues of coumaric and cinnamic acid were evaluated as possible tyrosinase inhibitors. We have identified some valuable inhibitors of C. neoformans growth and melanin biosynthesis disruption agents. The results showed that coumaric acid derivatives (1a-c), the ketones (3a-b) and 2-allylphenol (7c) are significant inhibitors of tyrosinase and melanization of the fungus. Two analogues (1b and 3b) were selected as promising antimelanogenic agents to be combined with AmB, showing to promote 16-fold reduction in the AmB fungicidal concentration with no appreciable cytotoxicity to mammalian cells. The data suggest that inhibition of the melanin biosynthesis by these compounds may increase the susceptibility of the cells to the oxidative stress generated by AmB. In summary, our data show that C. neoformans can be a suitable model system to test novel inhibitors that target melanin biosynthesis, and novel compounds for adjunct therapy against C. neoformans were identified.


Asunto(s)
Criptococosis , Cryptococcus neoformans , Anfotericina B/farmacología , Animales , Antifúngicos/farmacología , Ácidos Cumáricos , Criptococosis/tratamiento farmacológico , Humanos , Melaninas
5.
Curr Med Chem ; 27(13): 2133-2146, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-29714138

RESUMEN

BACKGROUND: Neglected tropical diseases are a group of infections caused by microorganisms and viruses that affect mainly poor regions of the world. In addition, most available drugs are associated with long periods of treatment and high toxicity which limits the application and patient compliance. Investment in research and development is not seen as an attractive deal by the pharmaceutical industry since the final product must ideally be cheap, not returning the amount invested. Natural products have always been an important source for bioactive compounds and are advantageous over synthetic compounds when considering the unique structural variety and biological activities. On the other hand, isolation difficulties and low yields, environmental impact and high cost usually limit their application as drug per se. OBJECTIVE: In this review, the use of natural products as prototypes for the semi-synthesis or total synthesis, as well as natural products as promising hits is covered, specifically regarding compounds with activities against trypanosomatids such as Trypanosoma spp. and Leishmania spp. METHODS: Selected reports from literature with this approach were retrieved. CONCLUSION: As summary, it can be concluded that natural products are an underestimated source for designing novel agents against these parasites.


Asunto(s)
Enfermedades Desatendidas , Productos Biológicos , Descubrimiento de Drogas , Humanos , Leishmania , Trypanosoma
6.
Chem Biol Drug Des ; 90(2): 317-322, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28109127

RESUMEN

The histamine receptors (HRs) are members of G-protein-coupled receptor superfamily and traditional targets of huge therapeutic interests. Recently, H3 R and H4 R have been explored as targets for drug discovery, including in the search for dual-acting H3 R/H4 R ligands. The H4 R, the most recent histamine receptor, is a promising target for novel anti-inflammatory agents in several conditions such as asthma and other chronic inflammatory diseases. Due to similarity with previously reported ligands of HRs, a set of 1-[(2,3-dihydro-1-benzofuran-2-yl)methyl]piperazines were synthesized and evaluated in competitive binding assays as H3 R/H4 R ligands herein. The results showed the compounds presented affinity (Ki ) for H3 R/H4 R in micromolar range, and they are more selective to H3 R. All the compounds showed no important cytotoxicity to mammalian cells. The phenyl-substituted compound LINS01005 has shown the higher affinity of the set for H4 R, but no considerable selectivity toward this receptor over H3 R. LINS01005 showed interesting anti-inflammatory activity in murine asthma model, reducing the eosinophil counts in bronchoalveolar lavage fluid, as well as the COX-2 expression. The presented compounds are valuable prototypes for further improvements to achieve better anti-inflammatory agents.


Asunto(s)
Antiinflamatorios/química , Antiinflamatorios/farmacología , Piperazinas/química , Piperazinas/farmacología , Receptores Acoplados a Proteínas G/inmunología , Receptores Histamínicos H3/inmunología , Receptores Histamínicos/inmunología , Animales , Antiinflamatorios/síntesis química , Antiinflamatorios/uso terapéutico , Asma/tratamiento farmacológico , Asma/inmunología , Benzofuranos/síntesis química , Benzofuranos/química , Benzofuranos/farmacología , Benzofuranos/uso terapéutico , Humanos , Piperazinas/síntesis química , Piperazinas/uso terapéutico , Ratas , Receptores Histamínicos H4
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...