Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Bipolar Disord ; 26(4): 376-387, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38558302

RESUMEN

BACKGROUND: Treatment of refractory bipolar disorder (BD) is extremely challenging. Deep brain stimulation (DBS) holds promise as an effective treatment intervention. However, we still understand very little about the mechanisms of DBS and its application on BD. AIM: The present study aimed to investigate the behavioural and neurochemical effects of ventral tegmental area (VTA) DBS in an animal model of mania induced by methamphetamine (m-amph). METHODS: Wistar rats were given 14 days of m-amph injections, and on the last day, animals were submitted to 20 min of VTA DBS in two different patterns: intermittent low-frequency stimulation (LFS) or continuous high-frequency stimulation (HFS). Immediately after DBS, manic-like behaviour and nucleus accumbens (NAc) phasic dopamine (DA) release were evaluated in different groups of animals through open-field tests and fast-scan cyclic voltammetry. Levels of NAc dopaminergic markers were evaluated by immunohistochemistry. RESULTS: M-amph induced hyperlocomotion in the animals and both DBS parameters reversed this alteration. M-amph increased DA reuptake time post-sham compared to baseline levels, and both LFS and HFS were able to block this alteration. LFS was also able to reduce phasic DA release when compared to baseline. LFS was able to increase dopamine transporter (DAT) expression in the NAc. CONCLUSION: These results demonstrate that both VTA LFS and HFS DBS exert anti-manic effects and modulation of DA dynamics in the NAc. More specifically the increase in DA reuptake driven by increased DAT expression may serve as a potential mechanism by which VTA DBS exerts its anti-manic effects.


Asunto(s)
Estimulación Encefálica Profunda , Modelos Animales de Enfermedad , Manía , Metanfetamina , Ratas Wistar , Área Tegmental Ventral , Animales , Área Tegmental Ventral/efectos de los fármacos , Área Tegmental Ventral/metabolismo , Metanfetamina/farmacología , Masculino , Ratas , Manía/terapia , Manía/inducido químicamente , Estimulantes del Sistema Nervioso Central/farmacología , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/metabolismo , Dopamina/metabolismo , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Trastorno Bipolar/terapia , Trastorno Bipolar/inducido químicamente
2.
Curr Neurovasc Res ; 20(5): 586-598, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38288841

RESUMEN

BACKGROUND: Major depression has a complex and multifactorial etiology constituted by the interaction between genetic and environmental factors in its development. OBJECTIVE: The aim of this study was to evaluate the effects of sodium butyrate (SD) on epigenetic enzyme alterations in rats subjected to animal models of depression induced by maternal deprivation (MD) or chronic mild stress (CMS). METHODS: To induce MD, male Wistar rats were deprived of maternal care during the first 10 days of life. To induce CMS, rats were subjected to the CMS for 40 days. Adult rats were then treated with daily injections of SD for 7 days. Animals were subjected to the forced swimming test (FST), and then, histone deacetylase (HDAC), histone acetyltransferase (HAT), and DNA methyltransferase (DNMT) activities were evaluated in the brain. RESULTS: MD and CMS increased immobility time in FST and increased HDAC and DNMT activity in the animal brains. SD reversed increased immobility induced by both animal models and the alterations in HDAC and DNMT activities. There was a positive correlation between enzyme activities and immobility time for both models. HDAC and DNMT activities also presented a positive correlation between themselves. CONCLUSION: These results suggest that epigenetics can play an important role in major depression pathophysiology triggered by early or late life stress and its treatment.


Asunto(s)
Antidepresivos , Encéfalo , Ácido Butírico , Epigénesis Genética , Privación Materna , Ratas Wistar , Estrés Psicológico , Animales , Masculino , Estrés Psicológico/tratamiento farmacológico , Ácido Butírico/farmacología , Ácido Butírico/uso terapéutico , Epigénesis Genética/efectos de los fármacos , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Ratas , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Histona Desacetilasas/metabolismo , Depresión/tratamiento farmacológico , Histona Acetiltransferasas/metabolismo , Natación/psicología
3.
Schizophrenia (Heidelb) ; 9(1): 69, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37798312

RESUMEN

One of the most robust neurochemical abnormalities reported in patients with schizophrenia is an increase in dopamine (DA) synthesis and release, restricted to the dorsal striatum (DS). This hyper functionality is strongly associated with psychotic symptoms and progresses in those who later transition to schizophrenia. To understand the implications of this progressive neurobiology on brain function, we have developed a model in rats which we refer to as EDiPs (Enhanced Dopamine in Prodromal schizophrenia). The EDiPs model features a virally mediated increase in dorsal striatal (DS) DA synthesis capacity across puberty and into adulthood. This protocol leads to progressive changes in behaviour and neurochemistry. Our aim in this study was to explore if increased DA synthesis capacity alters the physiology of DA release and DS connectivity. Using fast scan cyclic voltammetry to assess DA release we show that evoked/phasic DA release is increased in the DS of EDiPs rats, whereas tonic/background levels of DA remain unaffected. Using quantitative immunohistochemistry methods to quantify DS synaptic architecture we show a presynaptic marker for DA release sites (Bassoon) was elevated within TH axons specifically within the DS, consistent with the increased phasic DA release in this region. Alongside changes in DA systems, we also show increased density of vesicular glutamate transporter 1 (VGluT1) synapses in the EDiPs DS suggesting changes in cortical connectivity. Our data may prove relevant in understanding the long-term implications for DS function in response to the robust and prolonged increases in DA synthesis uptake and release reported in schizophrenia.

4.
Int J Dev Neurosci ; 83(8): 691-702, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37635268

RESUMEN

This study aimed to evaluate Haloperidol's (Hal) effects on the behavioral, neurotrophic factors, and epigenetic parameters in an animal model of schizophrenia (SCZ) induced by ketamine (Ket). Injections of Ket or saline were administered intraperitoneal (once a day) between the 1st and 14th days of the experiment. Water or Hal was administered via gavage between the 8th and 14th experimental days. Thirty minutes after the last injection, the animals were subjected to behavioral analysis. The activity of DNA methyltransferase (DNMT), histone deacetylase (HDAC), and histone acetyltransferase and levels of brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), neurotrophin-3 (NT-3), and glial-derived neurotrophic factor (GDNF) were evaluated in the frontal cortex, hippocampus, and striatum. Ket increased the covered distance and time spent in the central area of the open field, and Hal did not reverse these behavioral alterations. Significant increases in the DNMT and HDAC activities were detected in the frontal cortex and striatum from rats that received Ket, Hal, or a combination thereof. Besides, Hal per se increased the activity of DNMT and HDAC in the hippocampus of rats. Hal per se or the association of Ket plus Hal decreased BDNF, NGF, NT-3, and GDNF, depending on the brain region and treatment regimen. The administration of Hal can alter the levels of neurotrophic factors and the activity of epigenetic enzymes, which can be a factor in the development of effect collateral in SCZ patients. However, the precise mechanisms involved in these alterations are still unclear.


Asunto(s)
Ketamina , Esquizofrenia , Humanos , Ratas , Animales , Haloperidol/farmacología , Esquizofrenia/inducido químicamente , Esquizofrenia/tratamiento farmacológico , Esquizofrenia/genética , Ketamina/toxicidad , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado de la Línea Celular Glial , Factor de Crecimiento Nervioso/genética , Modelos Animales de Enfermedad , Epigénesis Genética
6.
Sci Rep ; 12(1): 11529, 2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35798809

RESUMEN

Sepsis is defined as a life-threatening organ dysfunction caused by an inappropriate host response to infection. The presence of oxidative stress and inflammatory mediators in sepsis leads to dysregulated gene expression, leading to a hyperinflammatory response. Environmental conditions play an important role in various pathologies depending on the stimulus it presents. A standard environment condition (SE) may offer reduced sensory and cognitive stimulation, but an enriched environment improves spatial learning, prevents cognitive deficits induced by disease stress, and is an important modulator of epigenetic enzymes. The study evaluated the epigenetic alterations and the effects of the environmental enrichment (EE) protocol in the brain of animals submitted to sepsis by cecal ligation and perforation (CLP). Male Wistar rats were divided into sham and CLP at 24 h, 72 h, 10 days and 30 days after sepsis. Other male Wistar rats were distributed in a SE or in EE for forty-five days. Behavioral tests, analysis of epigenetic enzymes:histone acetylase (HAT), histone deacetylase (HDAC) and DNA methyltransferase (DNMT), biochemical and synaptic plasticity analyzes were performed. An increase in HDAC and DNMT activities was observed at 72 h, 10 days and 30 days. There was a positive correlation between epigenetic enzymes DNMT and HDAC 24 h, 10 days and 30 days. After EE, HDAC and DNMT enzyme activity decreased, cognitive impairment was reversed, IL1-ß levels decreased and there was an increase in PSD-95 levels in the hippocampus. Interventions in environmental conditions can modulate the outcomes of long-term cognitive consequences associated with sepsis, supporting the idea of the potential benefits of EE.


Asunto(s)
Hipocampo , Sepsis , Animales , Cognición , Modelos Animales de Enfermedad , Epigénesis Genética , Hipocampo/metabolismo , Masculino , Ratas , Ratas Wistar , Sepsis/complicaciones
7.
Neurosci Biobehav Rev ; 135: 104579, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35167845

RESUMEN

Susceptibility to psychiatric disorders seems to be influenced by environmental disturbances throughout all stages of life. Epigenetics is described as a key "bridge" between gene and environment, shaping gene expression and phenotype in response to environmental influences. For a long time, it was believed the epigenetic information could not be transmitted from one generation to the next, however, recent evidence has demonstrated that these acquired changes can be transmitted across generations in different species, with implications also for humans. The emerging evidence of epigenetic inheritance mechanisms is changing the concept of how and what information can be transferred across generations, rising as a promising theory to explain how psychiatric-related information can be inherited. In this review, we will discuss the main theory about epigenetic inheritance, present clinical evidence of its potential role in major psychiatric disorders, and how studies with patients and animal models have helped describe the epigenetic mechanisms and possible targets underlying this process in schizophrenia, bipolar disorder, depression, post-traumatic stress disorder, anxiety, substance use disorder and autism.


Asunto(s)
Patrón de Herencia , Trastornos Mentales , Animales , Metilación de ADN , Epigénesis Genética/genética , Epigenómica , Humanos , Trastornos Mentales/genética , Fenotipo
8.
Rev. colomb. quím. (Bogotá) ; 50(3): 32-41, Sep.-Dec. 2021. tab, graf
Artículo en Español | LILACS-Express | LILACS | ID: biblio-1388985

RESUMEN

Resumen El virus de la influenza A es el responsable de la gripe aviar, condición patológica que afecta principalmente aves, caballos y mamíferos marinos, sin embargo, el subtipo H5NI tiene la capacidad de infectar a los humanos de forma rápida, exponiéndolos a un posible evento pandémico. Por tanto, el objetivo de este estudio fue realizar el acoplamiento molecular y modelado tridimensional por homología de flavonoides derivados de amentoflavona con las neuraminidasas H1N1 y H5N1 del virus de gripe aviar. Inicialmente, se obtuvo por homología la estructura 3D de la neuraminidasa H1N1. Seguido, se realizó un acoplamiento molecular de H1N1 con seis ligandos (F36, Ginkgetin, 3S,3R, 5S,5R, 6S y 6R), y más adelante H5N1 y los ligandos F36, Ginkgetin, 5R y 6R. Finalmente, a los complejos obtenidos se les realizó un análisis de interacciones. Los resultados dejaron en evidencia una relación entre la actividad inhibitoria y las interacciones tipo puente de hidrógeno e hidrofóbicas formadas entre el sitio activo de las neuraminidasas y los ligandos. Además, se observó una mejora en la actividad inhibitoria de los ligandos para la estereoquímica tipo R y sustituyentes poco voluminosos. De ahí que se propongan la evaluación experimental de los ligandos 5R y 6R como potenciales inhibidores de H5N1.


Abstract The influenza A virus is responsible for bird flu; a pathological condition that mainly affects birds, horses, and marine mammals, however, the H5N' subtype can infect humans quickly; exposing them to a possible pandemic event. Therefore, the objective of this study was to carry out the molecular docking and three-dimensional homology modeling of flavonoids derived from amentoflavone with H'NI and H5NI neuraminidases of the avian influenza virus. Initially, the 3D structure of H1N1 neuraminidase was obtained by homology. Then, the molecular docking of H1N1 was carried out with six ligands (F36, Ginkgetin, 3S, 3R, 5S, 5R, 6S, and 6R), and subsequently H5N1 and F36, Ginkgetin, 5R, and 6R ligands. Finally, an interaction analysis of the proteinligand complex was performed. The results showed a relationship between the inhibitory activity of ligands and the hydrophobic and hydrogen bridge-type interactions. In addition, an improvement in the inhibitory activity of the ligands for R-type stereochemistry and small bulky substituents was observed. Thus, the experimental evaluation of the 5R and 6R ligands as potential H5N' inhibitors is proposed.


Resumo O vírus influenza A é responsável pela gripe aviária; condição patológica que afeta principalmente pássaros, cavalos e mamíferos marinhos, no entanto, o subtipo H5N' tem a capacidade de infectar humanos rapidamente; assim, expondo-os a um possível evento pandémico. Portanto, o objetivo deste estudo foi realizar o acoplamento e modelagem de homologia tridimensional de flavonóides derivados da amentoflavona com as neuraminidases H1N1 e H5N1 do vírus da influenza aviária. Inicialmente, a estrutura 3D da neuraminidase H1N1 foi obtida por homologia. Em seguida, o acoplamento molecular de H1N1 foi realizado com seis ligantes (F36, Ginkgetin, 3S, 3R, 5S, 5R, 6S e 6R) e, posteriormente, H5NI e os ligantes F36, Ginkgetin, 5R e 6R. Finalmente, uma análise de interação foi realizada nos complexos obtidos. Os resultados mostraram uma relação entre a atividade inibitória e as interações hidrofóbicas e do tipo ponte de hidrogénio formadas entre o sítio ativo das neuraminidases e os ligantes. Além disso, foi observada uma melhoria na atividade inibitória dos ligantes para a estereoquímica do tipo R e pequenos substituintes volumosos. Assim, é proposta a avaliação experimental dos ligantes 5R e 6R como potenciais inibidores do H5NI.

9.
Int J Dev Neurosci ; 81(5): 461-467, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33786893

RESUMEN

INTRODUCTION: Schizophrenia is considered one of the most disabling and severe human diseases worldwide. The etiology of schizophrenia is thought to be multifactorial and evidence suggests that DNA methylation can play an important role in underlying pivotal neurobiological alterations of this disorder. Some studies have demonstrated the effects of dietary supplementation as an alternative approach to the prevention of schizophrenia, including folic acid. However, no study has ever investigated the role of such supplementation in altering the DNA methylation system in the context of schizophrenia. OBJECTIVES: The present study aims to investigate the effects of maternal folic acid supplementation at different doses on nuclear methyltransferase activity of adult rat offspring subjected to an animal model schizophrenia induced by ketamine. METHODS: Adult female Wistar rats, (60 days old) received folic acid-deficient diet, control diet, or control diet plus folic acid supplementation (at 5, 10, or 50 mg/kg) during pregnancy and lactation. After reaching adulthood (60 days), the male offspring of these dams were subjected to the animal model of schizophrenia induced by 7 days of ketamine intraperitoneal injection (25 mg/kg). After the 7-day protocol, the activity of nuclear methyltransferase was evaluated in the brains of the offspring. RESULTS: Maternal folic acid supplementation at 50 mg/kg increased methyltransferase activity in the frontal cortex, while 10 mg/kg increased methyltransferase activity in the hippocampus. In the striatum of offspring treated with ketamine, maternal deficient diet, control diet, and folic acid supplementation at 5 mg/kg decreased methyltransferase activity compared to the control group. The folic acid supplementation at 10 and 50 mg/kg reversed this ketamine effect. CONCLUSIONS: Maternal FA deficiency could be related to schizophrenia pathophysiology, while FA supplementation could present a protective effect since it demonstrated persistent effects in epigenetic parameters in adult offspring.


Asunto(s)
Núcleo Celular/enzimología , Ácido Fólico/uso terapéutico , Metiltransferasas/metabolismo , Esquizofrenia/prevención & control , Animales , Núcleo Celular/efectos de los fármacos , Metilación de ADN/efectos de los fármacos , Dieta , Suplementos Dietéticos , Femenino , Deficiencia de Ácido Fólico/complicaciones , Ketamina , Masculino , Embarazo , Ratas , Ratas Wistar , Esquizofrenia/inducido químicamente , Esquizofrenia/enzimología , Psicología del Esquizofrénico
10.
J Affect Disord ; 282: 1195-1202, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33601696

RESUMEN

BACKGROUND: The present study aims to evaluate the effects of ouabain on memory and neurotrophic parameters in the brains of rats. METHODS: Wistar rats received an intracerebroventricular (ICV) injection of ouabain or artificial cerebrospinal fluid (aCSF). Seven and 14 days after ICV administration, the animals were subjected to the open-field and splash tests. Furthermore, the pro-BDNF, BDNF, TrkB, and CREB were assessed in the frontal cortex and hippocampus of the rats, in both seven and 14 days after ICV injection. The memory of the animals was tested by novel object recognition test (NOR) and inhibitory avoidance task (IA), only 14 days after ICV administration. RESULTS: Ouabain increased locomotion and exploration in the animals seven days after its administration; however, 14 days after ICV, these behavioral parameters return to the basal level. Seven days after ouabain administration increased grooming behavior in the splash test; on the other hand, seven days after ouabain injection decreased the grooming behavior, which is considered an anhedonic response. Besides, ouabain decreased recognition index in the NOR and decreased aversive memory in the IA, when compared to the control group. The levels of pro-BDNF and BDNF decreased in the frontal cortex seven days after ouabain; but its receptor (TrkB) and CREB decreased seven and 14 days after ouabain, in both cerebral structures evaluated. CONCLUSION: Ouabain-induced animal model of BD is an excellent model to assess memory alteration, observed in bipolar patients. Besides, the memory impairment induced by ouabain seems to be related to BDNF signaling pathway alterations.


Asunto(s)
Trastorno Bipolar , Ouabaína , Animales , Trastorno Bipolar/inducido químicamente , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Cognición , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Humanos , Ouabaína/toxicidad , Ratas , Ratas Wistar , Transducción de Señal
11.
Eur J Neurosci ; 53(2): 649-662, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32735698

RESUMEN

It is known that bipolar disorder has a multifactorial aetiology where the interaction between genetic and environmental factors is responsible for its development. Because of this, epigenetics has been largely studied in psychiatric disorders. The present study aims to evaluate the effects of histone deacetylase inhibitors on epigenetic enzyme alterations in rats or mice submitted to animal models of mania induced by dextro-amphetamine or sleep deprivation, respectively. Adult male Wistar rats were subjected to 14 days of dextro-amphetamine administration, and from the eighth to the fourteenth day, the animals were treated with valproate and sodium butyrate in addition to dextro-amphetamine injections. Adult C57BL/6 mice received 7 days of valproate or sodium butyrate administration, being sleep deprived at the last 36 hr of the protocol. Locomotor and exploratory activities of rats and mice were evaluated in the open-field test, and histone deacetylase, DNA methyltransferase, and histone acetyltransferase activities were assessed in the frontal cortex, hippocampus, and striatum. Dextro-amphetamine and sleep deprivation induced hyperactivity and increased histone deacetylase and DNA methyltransferase activities in the animal's brain. Valproate and sodium butyrate were able to reverse hyperlocomotion induced by both animal models, as well as the alterations on histone deacetylase and DNA methyltransferase activities. There was a positive correlation between enzyme activities and number of crossings for both models. Histone deacetylase and DNA methyltransferase activities also presented a positive correlation between theirselves. These results suggest that epigenetics can play an important role in BD pathophysiology as well as in its treatment.


Asunto(s)
Antimaníacos , Privación de Sueño , Anfetamina , Animales , Antimaníacos/farmacología , Antimaníacos/uso terapéutico , Modelos Animales de Enfermedad , Epigénesis Genética , Masculino , Manía , Ratones , Ratones Endogámicos C57BL , Ratas , Ratas Wistar , Sueño REM
12.
J Affect Disord ; 271: 115-122, 2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32479306

RESUMEN

BACKGROUND: Bipolar Disorder (BD) is a chronic psychiatric disorder characterized by mood disturbances that include depressive, manic, and hypomanic episodes. Despite the severity of the symptoms, there is still a gap in the literature on the precise neurobiology and treatment of BD. The investigations of inflammatory changes in BD has increased in the last decade, evincing the importance of its role in the pathophysiology of the disorder. The present study aimed to investigate the inflammatory role in BD, through the evaluation of biomarkers and their relation to biological rhythms. METHODS: It was conducted a case-control study that included 36 BD and 46 healthy controls (HC). The Cyclooxygenase 2 (COX-2) enzyme, Arachidonic Acid (AA), interleukins (IL) IL-4, IL-5, IL-6, IL-10, IL-33, and Tumor Necrosis Factor Alpha (TNF-α) in the serum of individuals. It also was administered the Biological Rhythm Interview of Assessment in Neuropsychiatry (BRIAN) to the BD and healthy control groups. RESULTS: The results indicated that the individuals with BD showed increased COX-2, AA, IL-6, and TNF-α levels in comparison to the HC without psychiatric disorders, as well as significant commitments in all domains evaluated by BRIAN. LIMITATIONS: Uncontrolled pharmacotherapy used by the included bipolar participants, which had important effects on participants' inflammatory systems and the lack of cases with bipolar manic episodes. CONCLUSIONS: The results of the present study reaffirm that inflammation has an important role in BD, as well as the significant changes in biological rhythms. It is still necessary to better characterize the inflammatory pathway of AA.


Asunto(s)
Trastorno Bipolar , Biomarcadores , Estudios de Casos y Controles , Humanos , Periodicidad , Factor de Necrosis Tumoral alfa
13.
Pharmacol Biochem Behav ; 193: 172917, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32222371

RESUMEN

BACKGROUND: The etiology of bipolar disorder (BD) is multifactorial, involving both environmental and genetic factors. Current pharmacological treatment is associated with several side effects, which are the main reason patients discontinue treatment. Epigenetic alterations have been studied for their role in the pathophysiology of BD, as they bridge the gap between gene and environment. OBJECTIVE: Evaluate the effects of histone deacetylase inhibitors on behavior and epigenetic enzymes activity in a rat model of mania induced by ouabain. METHODS: Adult male rats were subjected to a single intracerebroventricular injection of ouabain (10-3 M) followed by 7 days of valproate (200 mg/kg) or sodium butyrate (600 mg/kg) administration. Locomotor and exploratory activities were evaluated in the open-field test. Histone deacetylase, DNA methyltransferase, and histone acetyltransferase activity were assessed in the frontal cortex, hippocampus, and striatum. RESULTS: Ouabain induced hyperactivity in rats, which was reversed by valproate and sodium butyrate treatment. Ouabain did not alter the activity of any of the enzymes evaluated. However, valproate and sodium butyrate decreased the activity of histone deacetylase and DNA methyltransferase. Moreover, there was a positive correlation between these two enzymes. CONCLUSION: These results suggest that targeting epigenetic mechanisms may play an important role in mania-like behavior management.


Asunto(s)
Conducta Animal/efectos de los fármacos , Ácido Butírico/administración & dosificación , Inhibidores de Histona Desacetilasas/administración & dosificación , Manía/inducido químicamente , Manía/tratamiento farmacológico , Ouabaína/efectos adversos , Transducción de Señal/efectos de los fármacos , Ácido Valproico/administración & dosificación , Animales , Trastorno Bipolar/tratamiento farmacológico , Ácido Butírico/farmacología , Cuerpo Estriado/metabolismo , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Modelos Animales de Enfermedad , Lóbulo Frontal/metabolismo , Hipocampo/metabolismo , Histona Acetiltransferasas/metabolismo , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Locomoción/efectos de los fármacos , Masculino , Ratas , Ratas Wistar , Resultado del Tratamiento , Ácido Valproico/farmacología
14.
Metab Brain Dis ; 35(2): 413-425, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31840201

RESUMEN

Evaluate the efficacy of folic acid (FA) as a therapeutic adjunct to lithium (Li) on the manic-like behaviors as well as parameters of oxidative stress and inflammation in an animal model of mania induced by m-amphetamine (m-AMPH). Wistar rats first received m-AMPH or saline (NaCl 0.9%, Sal) for 14 days. Between the 8th and 14th day, rats were treated with water, Li, FA or a combination of thereof drugs (Li + FA). Manic-like behaviors were assessed in the open-field test. Oxidative stress and inflammation parameters were assessed in the frontal cortex, striatum, and hippocampus. Administration of m-AMPH in rats significantly enhanced the exploratory and locomotor behaviors, as well as the risk-taking and stereotypic behaviors. Li + FA reversed these behavioral alterations elicited by m-AMPH. Administration of this psychostimulant also increased oxidative damage to lipids and proteins, whereas Li + FA reversed these oxidative damages. m-AMPH also induced an increase in the glutathione peroxidase (GPx) activity and a decrease in the glutathione reductase (GR) activity. Li + FA reversed the alteration in GR activity, but not in GPx activity. In addition, m-AMPH increased the IL-1ß and TNF-α levels in the rat brain; Li + FA combined therapy reversed the alterations on these inflammatory parameters. FA administration per se reduced the increased TNF-α content induced by m-AMPH. Present study provides evidence that FA is effective as an adjunct to Li standard therapy on manic-like behaviors, oxidative stress and inflammatory parameters in a model of mania induced by m-AMPH.


Asunto(s)
Antimaníacos/administración & dosificación , Ácido Fólico/administración & dosificación , Mediadores de Inflamación/antagonistas & inhibidores , Litio/administración & dosificación , Manía/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Anfetamina/toxicidad , Animales , Estimulantes del Sistema Nervioso Central/toxicidad , Modelos Animales de Enfermedad , Quimioterapia Combinada , Mediadores de Inflamación/metabolismo , Masculino , Manía/inducido químicamente , Manía/metabolismo , Estrés Oxidativo/fisiología , Ratas , Ratas Wistar , Resultado del Tratamiento
15.
Transl Psychiatry ; 9(1): 297, 2019 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-31723123

RESUMEN

The present study intends to investigate the effect of lithium (Li) and celecoxib (Cel) coadministration on the behavioral status and oxidative stress parameters in a rat model of mania induced by dextroamphetamine (d-AMPH). Male Wistar rats were treated with d-AMPH or saline (Sal) for 14 days; on the 8th day of treatment, rats received lithium (Li), celecoxib (Cel), Li plus Cel, or water until day 14. Levels of oxidative stress parameters were evaluated in the serum, frontal cortex, and hippocampus. d-AMPH administration induced hyperlocomotion in rats, which was significantly reversed by Li and Cel coadministration. In addition, d-AMPH administration induced damage to proteins and lipids in the frontal cortex and hippocampus of rats. All these impairments were reversed by treatment with Li and/or Cel, in a way dependent on cerebral area and biochemical analysis. Li and Cel coadministration reversed the d-AMPH-induced decrease in catalase activity in cerebral structures. The activity of glutathione peroxidase was decreased in the frontal cortex of animals receiving d-AMPH, and treatment with Li, Cel, or a combination thereof reversed this alteration in this structure. Overall, data indicate hyperlocomotion and alteration in oxidative stress biomarkers in the cerebral structures of rats receiving d-AMPH. Li and Cel coadministration can mitigate these modifications, comprising a potential novel approach for BD therapy.


Asunto(s)
Antiinflamatorios no Esteroideos/uso terapéutico , Antimaníacos/uso terapéutico , Conducta Animal/efectos de los fármacos , Trastorno Bipolar/tratamiento farmacológico , Celecoxib/uso terapéutico , Compuestos de Litio/uso terapéutico , Animales , Antiinflamatorios no Esteroideos/administración & dosificación , Antimaníacos/administración & dosificación , Trastorno Bipolar/inducido químicamente , Celecoxib/administración & dosificación , Dextroanfetamina/administración & dosificación , Modelos Animales de Enfermedad , Dopamina/metabolismo , Quimioterapia Combinada , Lóbulo Frontal/efectos de los fármacos , Lóbulo Frontal/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Compuestos de Litio/administración & dosificación , Masculino , Actividad Motora/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Wistar
16.
Pharmacol Biochem Behav ; 183: 56-63, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31158395

RESUMEN

The present study evaluated the effects of the coadministration of lithium (Li) and Cel on inflammatory parameters in an animal model of mania induced by dextroamphetamine (D-amph). It was used Wistar rats 60 days old (250-350 g). The animals (n = 10 per group) received D-amph (2 mg/kg) or saline solution of NaCl 0.9% (Sal) intraperitoneally once a day for 14 days. From day eight until 14, the animals from the D-amph and Sal groups received Li (24 mg/kg), Cel (20 mg/kg), Li + Cel or water via gavage. Behavioral analyses were performed using the open-field test. The levels of IL-1ß, IL-4, IL-10, and TNF-α were evaluated. The administration of D-amph induced hyperactivity in the rats, as well increased the IL-4, IL-10, and TNF-α levels in the serum, frontal cortex, and striatum of rats compared to those of the controls, and treatment with Li plus Cel reversed these alterations. In general, the administration of Li or Cel per se did not have effects on the behavioral and biochemical parameters. However, the treatment with Cel per se decreased only the IL-10 levels in the serum of animals. Besides, the treatment with Li or Cel decreased the IL-4 levels in the serum and reversed the effects of D-amph on this parameter in the frontal cortex. The treatment with Li reversed the effects of D-amph on the TNF-α levels in all tissues evaluated, and the administration of Cel reversed this alteration only in the striatum. It can be observed that treatment with Li plus Cel was more effective against damages caused by D-amph when compared to the administration of both treatments per se, suggesting that the coadministration can be more effective to treat BD rather than Li or Cel itself. The treatment with Li plus Cel was effective against the inflammation induced by D-amph.


Asunto(s)
Antiinflamatorios no Esteroideos/uso terapéutico , Antimaníacos/uso terapéutico , Conducta Animal/efectos de los fármacos , Trastorno Bipolar/inducido químicamente , Trastorno Bipolar/tratamiento farmacológico , Celecoxib/uso terapéutico , Dextroanfetamina/farmacología , Compuestos de Litio/uso terapéutico , Análisis de Varianza , Animales , Antiinflamatorios no Esteroideos/administración & dosificación , Antimaníacos/administración & dosificación , Celecoxib/administración & dosificación , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Citocinas/metabolismo , Dextroanfetamina/administración & dosificación , Modelos Animales de Enfermedad , Quimioterapia Combinada , Lóbulo Frontal/efectos de los fármacos , Lóbulo Frontal/metabolismo , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Compuestos de Litio/administración & dosificación , Masculino , Ratas , Ratas Wistar
17.
Transl Psychiatry ; 9(1): 158, 2019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-31164628

RESUMEN

A particular challenge in the development of a bipolar disorder (BD) model in animals is the complicated clinical course of the condition, characterized by manic, depressive and mixed mood episodes. Ouabain (OUA) is an inhibitor of Na+/K+-ATPase enzyme. Intracerebroventricular (ICV) injection of this drug in rats has been regarded a proper model to study BD by mimic specific manic symptoms, which are reversed by lithium (Li), an important mood stabilizer drug. However, further validation of this experimental approach is required to characterize it as an animal model of BD, including depressive-like behaviors. The present study aimed to assess manic- and depressive-like behaviors, potential alteration in the hypothalamic-pituitary-adrenal (HPA) system and oxidative stress parameters after a single OUA ICV administration in adult male Wistar rats. Moreover, we evaluated Li effects in this experimental setting. Data show that OUA ICV administration could constitute a suitable model for BD since the injection of the drug triggered manic- and depressive-like behaviors in the same animal. Additionally, the OUA model mimics significant physiological and neurochemical alterations detected in BD patients, including an increase in oxidative stress and change in HPA axis. Our findings suggest that decreased Na+/K+-ATPase activity detected in bipolar patients may be linked to increased secretion of glucocorticoid hormones and oxidative damage, leading to the marked behavioral swings. The Li administration mitigated these pathological changes in the rats. The proposed OUA model is regarded as suitable to simulate BD by complying with all validities required to a proper animal model of the psychiatric disorder.


Asunto(s)
Conducta Animal/efectos de los fármacos , Trastorno Bipolar/inducido químicamente , Trastorno Bipolar/fisiopatología , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/farmacología , Sistema Hipotálamo-Hipofisario/efectos de los fármacos , Ouabaína/farmacología , Sistema Hipófiso-Suprarrenal/efectos de los fármacos , Animales , Antimaníacos/farmacología , Trastorno Bipolar/tratamiento farmacológico , Trastorno Bipolar/metabolismo , Sistema Hipotálamo-Hipofisario/metabolismo , Sistema Hipotálamo-Hipofisario/fisiopatología , Inyecciones Intraventriculares , Compuestos de Litio/farmacología , Masculino , Sistema Hipófiso-Suprarrenal/metabolismo , Sistema Hipófiso-Suprarrenal/fisiopatología , Ratas Wistar
18.
J Psychiatr Res ; 113: 181-189, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30981159

RESUMEN

Studies have suggested the involvement of oxidative stress in the physiopathology of bipolar disorder. Preclinical data have shown that PKC inhibitors may act as mood-stabilizing agents and protect the brain in animal models of mania. The present study aimed to evaluate the effects of Lithium (Li) or tamoxifen (TMX) on behavioral changes and oxidative stress parameters in an animal model of mania induced by ouabain (OUA). Wistar rats received a single intracerebroventricular (ICV) injection of OUA or artificial cerebrospinal fluid (ACSF). From the day following ICV injection, the rats were treated for seven days with intraperitoneal injections of saline, Li or TMX twice a day. On the 7th day after OUA injection, locomotor activity was measured using the open-field test, and the oxidative stress parameters were evaluated in the hippocampus and frontal cortex of rats. The results showed that OUA induced hyperactivity in rats, which is considered a manic-like behavior. Also, OUA increased lipid peroxidation and oxidative damage to proteins, as well as causing alterations to antioxidant enzymes in the frontal cortex and hippocampus of rats. The Li or TMX treatment reversed the manic-like behavior induced by OUA. Besides, Li, but not TMX, reversed the oxidative damage caused by OUA. These results suggest that the manic-like effects induced by OUA and the antimanic effects of TMX seem not to be related to the oxidative stress.


Asunto(s)
Antimaníacos/farmacología , Trastorno Bipolar/tratamiento farmacológico , Encéfalo/efectos de los fármacos , Encéfalo/fisiopatología , Estrés Oxidativo , Tamoxifeno/farmacología , Animales , Trastorno Bipolar/fisiopatología , Modelos Animales de Enfermedad , Masculino , Ouabaína/administración & dosificación , Ratas , Ratas Wistar , Moduladores Selectivos de los Receptores de Estrógeno/farmacología
19.
J Affect Disord ; 245: 1106-1113, 2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30699853

RESUMEN

BACKGROUND: Bipolar disorder (BD) and substance use disorders share common symptoms, such as behavioral sensitization. Amphetamine-induced behavioral sensitization can serve as an animal model of BD. Neurotrophic factors have an important role in BD pathophysiology. This study evaluated the effects of amphetamine sensitization on behavior and neurotrophic factor levels in the brains of rats. METHODS: Wistar rats received daily intraperitoneal (i.p) injections of dextroamphetamine (d-AMPH) 2 mg/kg or saline for 14 days. After seven days of withdrawal, the animals were challenged with d-AMPH (0.5 mg/kg, i.p) and locomotor behavior was assessed. In a second protocol, rats were similarly treated with d-AMPH (2 mg/kg, i.p) for 14 days. After withdrawal, without d-AMPH challenge, depressive- and anxiety-like behaviors were evaluated through forced swimming test and elevated plus maze. Levels of brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), neurotrophin 3 (NT-3), neurotrophin 4/5 (NT-4/5) and glial-derived neurotrophic factor (GDNF) were evaluated in the frontal cortex, hippocampus, and striatum. RESULTS: D-AMPH for 14 days augmented locomotor sensitization to a lower dose of d-AMPH (0.5 mg/kg) after the withdrawal. d-AMPH withdrawal induced depressive- and anxious-like behaviors. BDNF, NGF, and GDNF levels were decreased, while NT-3 and NT-4 levels were increased in brains after d-AMPH sensitization. LIMITATIONS: Although d-AMPH induces manic-like behavior, the mechanisms underlying these effects can also be related to phenotypes of drug abuse. CONCLUSIONS: Together, vulnerability to mania-like behavior following d-AMPH challenge and extensive neurotrophic alterations, suggest amphetamine-induced behavioral sensitization is a good model of BD pathophysiology.


Asunto(s)
Ansiedad/metabolismo , Trastorno Bipolar/metabolismo , Encéfalo/metabolismo , Depresión/metabolismo , Dextroanfetamina/farmacología , Factores de Crecimiento Nervioso/metabolismo , Animales , Ansiedad/inducido químicamente , Conducta Animal/efectos de los fármacos , Trastorno Bipolar/inducido químicamente , Encéfalo/efectos de los fármacos , Factor Neurotrófico Derivado del Encéfalo/efectos de los fármacos , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Depresión/inducido químicamente , Modelos Animales de Enfermedad , Lóbulo Frontal/efectos de los fármacos , Lóbulo Frontal/metabolismo , Factor Neurotrófico Derivado de la Línea Celular Glial/efectos de los fármacos , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Locomoción/efectos de los fármacos , Masculino , Factor de Crecimiento Nervioso/efectos de los fármacos , Factor de Crecimiento Nervioso/metabolismo , Factores de Crecimiento Nervioso/efectos de los fármacos , Neurotrofina 3/efectos de los fármacos , Neurotrofina 3/metabolismo , Ratas , Ratas Wistar
20.
Mol Neurobiol ; 56(4): 2379-2393, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30027342

RESUMEN

The present study evaluated the effects of AR-A014418 on behavioral and oxidative stress parameters of rats submitted to the animal model of mania induced by ouabain (OUA). Wistar rats were submitted to stereotaxic surgery and received a single intracerebroventricular (ICV) injection of artificial cerebrospinal fluid (aCSF), OUA, or AR-A014418. After 7 days, the animals were submitted to open-field test. After behavioral analysis, the brains were dissected in frontal cortex and hippocampus to the evaluation of oxidative stress. The OUA induced manic-like behavior in rats, which was reversed by AR-A014418 treatment. The ICV administration of OUA increases the levels of superoxide in submitochondrial particles, lipid hydroperoxide (LPH), 4-hydroxynonenal (4-HNE), 8-isoprostane, protein carbonyl, 3-nitrotyrosine, and activity of superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione reductase (GR) in both structures evaluated. In general, the treatment with AR-A014418 reversed these effects of OUA on the submitochondrial particles, LPH, 4-HNE, 8-isoprostane, protein carbonyl, 3-nitrotyrosine levels, and SOD activity. Furthermore, the injection of OUA decreased the catalase activity, and AR-A014418 promoted an increase in activity of this enzyme in the brain structures. These results suggest that GSK-3ß inhibition can modulate manic-like behaviors. Also, it can be suggested that inhibition of GSK-3ß can be effective against oxidative stress. However, more studies are needed to better elucidate these mechanisms. Graphical Abstract The effects of AR-A014418 on the behavioral and oxidative stress parameters in the animal model of mania induced by ouabain. Superoxide = superoxide production in submitochondrial particles; LPH = lipid hydroperoxide; 4-HNE = 4-hydroxynonenal; SOD = superoxide dismutase; GPx = glutathione peroxidase; GR = glutathione reductase.


Asunto(s)
Conducta Animal , Trastorno Bipolar/enzimología , Trastorno Bipolar/patología , Glucógeno Sintasa Quinasa 3 beta/antagonistas & inhibidores , Estrés Oxidativo , Aldehídos/metabolismo , Animales , Antioxidantes/metabolismo , Conducta Animal/efectos de los fármacos , Trastorno Bipolar/fisiopatología , Catalasa/metabolismo , Dinoprost/análogos & derivados , Dinoprost/metabolismo , Modelos Animales de Enfermedad , Glutatión Peroxidasa/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Masculino , Actividad Motora/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Carbonilación Proteica/efectos de los fármacos , Ratas Wistar , Partículas Submitocóndricas/efectos de los fármacos , Partículas Submitocóndricas/metabolismo , Superóxido Dismutasa/metabolismo , Superóxidos/metabolismo , Tiazoles/administración & dosificación , Tiazoles/farmacología , Tirosina/análogos & derivados , Tirosina/metabolismo , Urea/administración & dosificación , Urea/análogos & derivados , Urea/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...