Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Brain ; 147(3): 1057-1074, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38153327

RESUMEN

Incomplete reperfusion of the microvasculature ('no-reflow') after ischaemic stroke damages salvageable brain tissue. Previous ex vivo studies suggest pericytes are vulnerable to ischaemia and may exacerbate no-reflow, but the viability of pericytes and their association with no-reflow remains under-explored in vivo. Using longitudinal in vivo two-photon single-cell imaging over 7 days, we showed that 87% of pericytes constrict during cerebral ischaemia and remain constricted post reperfusion, and 50% of the pericyte population are acutely damaged. Moreover, we revealed ischaemic pericytes to be fundamentally implicated in capillary no-reflow by limiting and arresting blood flow within the first 24 h post stroke. Despite sustaining acute membrane damage, we observed that over half of all cortical pericytes survived ischaemia and responded to vasoactive stimuli, upregulated unique transcriptomic profiles and replicated. Finally, we demonstrated the delayed recovery of capillary diameter by ischaemic pericytes after reperfusion predicted vessel reconstriction in the subacute phase of stroke. Cumulatively, these findings demonstrate that surviving cortical pericytes remain both viable and promising therapeutic targets to counteract no-reflow after ischaemic stroke.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Pericitos/fisiología , Infarto Cerebral
2.
Neurocrit Care ; 37(Suppl 1): 112-122, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34855119

RESUMEN

BACKGROUND: In ischemic stroke, cerebral autoregulation and neurovascular coupling may become impaired. The cerebral blood flow (CBF) response to spreading depolarization (SD) is governed by neurovascular coupling. SDs recur in the ischemic penumbra and reduce neuronal viability by the insufficiency of the CBF response. Autoregulatory failure and SD may coexist in acute brain injury. Here, we set out to explore the interplay between the impairment of cerebrovascular autoregulation, SD occurrence, and the evolution of the SD-coupled CBF response. METHODS: Incomplete global forebrain ischemia was created by bilateral common carotid artery occlusion in isoflurane-anesthetized rats, which induced ischemic SD (iSD). A subsequent SD was initiated 20-40 min later by transient anoxia SD (aSD), achieved by the withdrawal of oxygen from the anesthetic gas mixture for 4-5 min. SD occurrence was confirmed by the recording of direct current potential together with extracellular K+ concentration by intracortical microelectrodes. Changes in local CBF were acquired with laser Doppler flowmetry. Mean arterial blood pressure (MABP) was continuously measured via a catheter inserted into the left femoral artery. CBF and MABP were used to calculate an index of cerebrovascular autoregulation (rCBFx). In a representative imaging experiment, variation in transmembrane potential was visualized with a voltage-sensitive dye in the exposed parietal cortex, and CBF maps were generated with laser speckle contrast analysis. RESULTS: Ischemia induction and anoxia onset gave rise to iSD and aSD, respectively, albeit aSD occurred at a longer latency, and was superimposed on a gradual elevation of K+ concentration. iSD and aSD were accompanied by a transient drop of CBF (down to 11.9 ± 2.9 and 7.4 ± 3.6%, iSD and aSD), but distinctive features set the hypoperfusion transients apart. During iSD, rCBFx indicated intact autoregulation (rCBFx < 0.3). In contrast, aSD was superimposed on autoregulatory failure (rCBFx > 0.3) because CBF followed the decreasing MABP. CBF dropped 15-20 s after iSD, but the onset of hypoperfusion preceded aSD by almost 3 min. Taken together, the CBF response to iSD displayed typical features of spreading ischemia, whereas the transient CBF reduction with aSD appeared to be a passive decrease of CBF following the anoxia-related hypotension, leading to aSD. CONCLUSIONS: We propose that the dysfunction of cerebrovascular autoregulation that occurs simultaneously with hypotension transients poses a substantial risk of SD occurrence and is not a consequence of SD. Under such circumstances, the evolving SD is not accompanied by any recognizable CBF response, which indicates a severely damaged neurovascular coupling.


Asunto(s)
Circulación Cerebrovascular , Hipotensión , Animales , Corteza Cerebral , Circulación Cerebrovascular/fisiología , Homeostasis/fisiología , Hipoxia , Isquemia , Ratas
3.
Neuropharmacology ; 162: 107850, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31715193

RESUMEN

Stroke is an important cause of mortality and disability. Treatment options are limited, therefore the progress in this regard is urgently needed. Nimodipine, an L-type voltage-gated calcium channel antagonist dilates cerebral arterioles, but its systemic administration may cause potential side effects. We have previously constructed chitosan nanoparticles as drug carriers, which release nimodipine in response to decreasing pH typical of cerebral ischemia. Here we have set out to evaluate this nanomedical approach to deliver nimodipine selectively to acidic ischemic brain tissue. After washing a nanoparticle suspension with or without nimodipine (100 µM) on the exposed brain surface of anesthetized rats (n = 18), both common carotid arteries were occluded to create forebrain ischemia. Spreading depolarizations (SDs) were elicited by 1M KCl to deepen the ischemic insult. Local field potential, cerebral blood flow (CBF) and tissue pH were recorded from the cerebral cortex. Microglia activation and neuronal survival were evaluated in brain sections by immunocytochemistry. Ischemia-induced tissue acidosis initiated nimodipine release from nanoparticles, confirmed by the significant elevation of baseline CBF (47.8 ±â€¯23.7 vs. 29.3 ±â€¯6.96%). Nimodipine shortened the duration of both SD itself (48.07 ±â€¯23.29 vs. 76.25 ±â€¯17.2 s), and the associated tissue acidosis (65.46 ±â€¯20.2 vs. 138.3 ±â€¯66.07 s), moreover it enhanced the SD-related hyperemia (48.15 ±â€¯42.04 vs. 17.29 ±â€¯11.03%). Chitosan nanoparticles did not activate microglia. The data support the concept that tissue acidosis linked to cerebral ischemia can be employed as a trigger for targeted drug delivery. Nimodipine-mediated vasodilation and SD inhibition can be achieved by pH-responsive chitosan nanoparticles applied directly to the brain surface.


Asunto(s)
Acidosis/metabolismo , Isquemia Encefálica/metabolismo , Bloqueadores de los Canales de Calcio/administración & dosificación , Quitosano/metabolismo , Microglía/efectos de los fármacos , Nanopartículas/metabolismo , Nimodipina/administración & dosificación , Prosencéfalo/efectos de los fármacos , Acidosis/etiología , Animales , Materiales Biocompatibles , Isquemia Encefálica/complicaciones , Isquemia Encefálica/patología , Arteria Carótida Común , Supervivencia Celular , Circulación Cerebrovascular , Depresión de Propagación Cortical/efectos de los fármacos , Portadores de Fármacos , Sistemas de Liberación de Medicamentos , Concentración de Iones de Hidrógeno , Neuronas/efectos de los fármacos , Neuronas/patología , Prosencéfalo/irrigación sanguínea , Prosencéfalo/patología , Ratas
4.
Br J Pharmacol ; 176(9): 1222-1234, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30737967

RESUMEN

BACKGROUND AND PURPOSE: A new class of dihydropyridine derivatives, which act as co-inducers of heat shock protein but are devoid of calcium channel antagonist and vasodilator effects, has recently been developed with the purpose of selectively targeting neurodegeneration. Here, we evaluated the action of one of these novel compounds LA1011 on neurovascular coupling in the ischaemic rat cerebral cortex. As a reference, we applied nimodipine, a vasodilator dihydropyridine and well-known calcium channel antagonist. EXPERIMENTAL APPROACH: Rats were treated with LA1011 or nimodipine, either by chronic, systemic (LA1011), or acute, local administration (LA1011 and nimodipine). In the latter treatment group, global forebrain ischaemia was induced in half of the animals by bilateral common carotid artery occlusion under isoflurane anaesthesia. Functional hyperaemia in the somatosensory cortex was created by mechanical stimulation of the contralateral whisker pad under α-chloralose anaesthesia. Spreading depolarization (SD) events were elicited subsequently by 1 M KCl. Local field potential and cerebral blood flow (CBF) in the parietal somatosensory cortex were monitored by electrophysiology and laser Doppler flowmetry. KEY RESULTS: LA1011 did not alter CBF, but intensified SD, presumably indicating the co-induction of heat shock proteins, and, perhaps an anti-inflammatory effect. Nimodipine attenuated evoked potentials and SD. In addition to the elevation of baseline CBF, nimodipine augmented hyperaemia in response to both somatosensory stimulation and SD, particularly under ischaemia. CONCLUSIONS AND IMPLICATIONS: In contrast to the CBF improvement achieved with nimodipine, LA1011 seems not to have discernible cerebrovascular effects but may up-regulate the stress response.


Asunto(s)
Bloqueadores de los Canales de Calcio/farmacología , Circulación Cerebrovascular/efectos de los fármacos , Dihidropiridinas/farmacología , Corteza Somatosensorial/efectos de los fármacos , Animales , Masculino , Ratas , Ratas Sprague-Dawley
5.
Microvasc Res ; 114: 19-25, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28546077

RESUMEN

The kynurenine pathway is a cascade of enzymatic steps generating biologically active compounds. l-kynurenine (l-KYN) is a central metabolite of tryptophan degradation. In the mammalian brain, l-KYN is partly converted to kynurenic acid (KYNA), which exerts multiple effects on neurotransmission. Recently, l-KYN or one of its derivatives were attributed a direct role in the regulation of the systemic circulation. l-KYN dilates arterial blood vessels during sepsis in rats, while it increases cerebral blood flow (CBF) in awake rabbits. Therefore, we hypothesized that acute elevation of systemic l-KYN concentration may exert potential effects on mean arterial blood pressure (MABP) and on resting CBF in the mouse brain. C57Bl/6 male mice were anesthetized with isoflurane, and MABP was monitored in the femoral artery, while CBF was assessed through the intact parietal bone with the aid of laser speckle contrast imaging. l-KYN sulfate (l-KYNs) (300mg/kg, i.p.) or vehicle was administered intraperitoneally. Subsequently, MABP and CBF were continuously monitored for 2.5h. In the control group, MABP and CBF were stable (69±4mmHg and 100±5%, respectively) throughout the entire data acquisition period. In the l-KYNs-treated group, MABP was similar to that, of control group (73±6mmHg), while hypoperfusion transients of 22±6%, lasting 7±3min occurred in the cerebral cortex over the first 60-120min following drug administration. In conclusion, the systemic high-dose of l-KYNs treatment destabilizes resting CBF by inducing a number of transient hypoperfusion events. This observation indicates the careful consideration of the dose of l-KYN administration by interpreting the effect of kynurenergic manipulation on brain function. By planning clinical trials basing on kynurenergic manipulation possible vascular side effects should also be considered.


Asunto(s)
Corteza Cerebral/irrigación sanguínea , Circulación Cerebrovascular/efectos de los fármacos , Trastornos Cerebrovasculares/inducido químicamente , Quinurenina/toxicidad , Sulfatos/toxicidad , Animales , Presión Arterial , Velocidad del Flujo Sanguíneo , Trastornos Cerebrovasculares/fisiopatología , Inyecciones Intraperitoneales , Quinurenina/administración & dosificación , Quinurenina/análogos & derivados , Flujometría por Láser-Doppler , Masculino , Ratones Endogámicos C57BL , Sulfatos/administración & dosificación , Factores de Tiempo
6.
Sci Rep ; 6: 31402, 2016 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-27506382

RESUMEN

The significance of prostanoid signaling in neurovascular coupling during somatosensory stimulation is increasingly more appreciated, yet its involvement in mediating the cerebral blood flow (CBF) response to spreading depolarization (SD) has remained inconclusive. Selective cyclooxygenase (COX) enzyme inhibitors (NS-398, SC-560) or an antagonist (L161,982) of the EP4 type prostaglandin E2 receptor were applied topically to a cranial window over the parietal cortex of isoflurane-anesthetized Sprague-Dawley rats (n = 60). Global forebrain ischemia was induced by occlusion of both common carotid arteries in half of the animals. SDs were triggered by the topical application of 1M KCl. SD occurrence was confirmed by the acquisition of DC potential, and CBF variations were recorded by laser-Doppler flowmetry. EP4 receptor antagonism significantly decreased peak hyperemia and augmented post-SD oligemia in the intact but not in the ischemic cortex. COX-1 inhibition and EP4 receptor blockade markedly delayed repolarization after SD in the ischemic but not in the intact brain. COX-2 inhibition achieved no significant effect on any of the end points taken. The data suggest, that activation of EP4 receptors initiates vasodilation in response to SD in the intact brain, and - together with COX-1 derived prostanoids - shortens SD duration in the acute phase of ischemia.


Asunto(s)
Circulación Cerebrovascular/fisiología , Prostaglandinas/metabolismo , Transducción de Señal , Animales , Encéfalo/fisiopatología , Isquemia Encefálica/fisiopatología , Circulación Cerebrovascular/efectos de los fármacos , Inhibidores de la Ciclooxigenasa/farmacología , Flujometría por Láser-Doppler , Masculino , Nitrobencenos/farmacología , Prosencéfalo/efectos de los fármacos , Prosencéfalo/patología , Pirazoles/farmacología , Ratas , Ratas Sprague-Dawley , Sulfonamidas/farmacología , Tiofenos/farmacología , Triazoles/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...