Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Toxins (Basel) ; 16(8)2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39195777

RESUMEN

The climate-change-coupled fungal burden in crop management and the need to reduce chemical pesticide usage highlight the importance of finding sustainable ways to control Aspergillus flavus. This study examines the effectiveness of 50 Pseudomonas isolates obtained from corn rhizospheres against A. flavus in both solid and liquid co-cultures. The presence and quantity of aflatoxin B1 (AFB1) and AFB1-related compounds were determined using high-performance liquid chromatography-high resolution mass spectrometry analysis. Various enzymatic- or non-enzymatic mechanisms are proposed to interpret the decrease in AFB1 production, accompanied by the accumulation of biosynthetic intermediates (11-hydroxy-O-methylsterigmatocystin, aspertoxin, 11-hydroxyaspertoxin) or degradation products (the compounds C16H10O6, C16H14O5, C18H16O7, and C19H16O8). Our finding implies the upregulation or enhanced activity of fungal oxidoreductases and laccases in response to bacterial bioactive compound(s). Furthermore, non-enzymatic reactions resulted in the formation of additional degradation products due to acid accumulation in the fermented broth. Three isolates completely inhibited AFB1 or any AFB1-related compounds without significantly affecting fungal growth. These bacterial isolates supposedly block the entire pathway for AFB1 production in the fungus during interaction. Apart from identifying effective Pseudomonas isolates as potential biocontrol agents, this work lays the foundation for exploring new bacterial bioactive compounds.


Asunto(s)
Aflatoxina B1 , Aspergillus flavus , Pseudomonas , Zea mays , Aflatoxina B1/metabolismo , Aflatoxina B1/biosíntesis , Pseudomonas/metabolismo , Aspergillus flavus/metabolismo , Aspergillus flavus/crecimiento & desarrollo , Zea mays/microbiología , Rizosfera
2.
Microbiol Spectr ; : e0110324, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39189757

RESUMEN

Survival factor 1 (Svf1) protein has been described in some ascomycetous fungi where it was found to be contributing to several essential physiological processes, such as response to osmotic, oxidative and cold stresses, sphingolipid biosynthesis, morphogenesis, sporulation, antifungal resistance, and pathogenicity. It was also suggested that it can be a novel central regulator affecting the expression of various genes. In the present study, function of this protein and the encoding genes is described for the first time in a fungus (i.e., in Mucor lusitanicus) belonging to the order Mucorales. M. lusitanicus has two putative svf1 genes named svf1a and svf1b. Expression of both genes was proven. Although the expression of svf1a was affected by several environmental stresses and knocking out the gene affected adaptation to low temperatures and the sporulation ability, the main survival factor functions, such as participation in the maintenance of the viability, the response to oxidative and cold stresses, and the sphingolipid biosynthesis, could be associated with Svf1b, suggesting a central regulatory role to this protein. Interestingly, knockout of both genes affected the pathogenicity of the fungus in a Drosophila model. IMPORTANCE: Mucor lusitanicus is a widely used model organism to study various biological processes in the basal fungal group Mucorales. Several members of this group can be agents of mucormycosis, an opportunistic fungal infection, which is associated with high mortality, rapid progression, and wide resistance to the commonly used antifungal agents. Svf1 proteins have so far only been identified in fungi, where they have been involved in pathogenicity and resistance to antifungal agents in many cases. Only a limited number of factors affecting the stress response, antifungal resistance, and virulence of Mucorales fungi have been revealed. Elucidating the function of a fungus-specific protein that may regulate these processes may bring us closer to understanding the pathogenesis of these fungi.

3.
Appl Microbiol Biotechnol ; 108(1): 348, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38809353

RESUMEN

Mycotoxin production by aflatoxin B1 (AFB1) -producing Aspergillus flavus Zt41 and sterigmatocystin (ST) -hyperproducer Aspergillus creber 2663 mold strains on corn and rice starch, both of high purity and nearly identical amylose-amylopectin composition, as the only source of carbon, was studied. Scanning electron microscopy revealed average starch particle sizes of 4.54 ± 0.635 µm and 10.9 ± 2.78 µm, corresponding to surface area to volume ratios of 127 1/µm for rice starch and 0.49 1/µm for corn starch. Thus, a 2.5-fold difference in particle size correlated to a larger, 259-fold difference in surface area. To allow starch, a water-absorbing powder, to be used as a sole food source for Aspergillus strains, a special glass bead system was applied. AFB1 production of A. flavus Zt41 was determined to be 437.6 ± 128.4 ng/g and 90.0 ± 44.8 ng/g on rice and corn starch, respectively, while corresponding ST production levels by A. creber 2663 were 72.8 ± 10.0 µg/g and 26.8 ± 11.6 µg/g, indicating 3-fivefold higher mycotoxin levels on rice starch than on corn starch as sole carbon and energy sources. KEY POINTS: • A glass bead system ensuring the flow of air when studying powders was developed. • AFB1 and ST production of A. flavus and A. creber on rice and corn starches were studied. • 3-fivefold higher mycotoxin levels on rice starch than on corn starch were detected.


Asunto(s)
Oryza , Almidón , Zea mays , Oryza/química , Zea mays/química , Almidón/metabolismo , Aspergillus/metabolismo , Aspergillus flavus/metabolismo , Aflatoxina B1/biosíntesis , Aflatoxina B1/metabolismo , Esterigmatocistina/biosíntesis , Esterigmatocistina/metabolismo , Microscopía Electrónica de Rastreo , Tamaño de la Partícula , Micotoxinas/metabolismo , Micotoxinas/biosíntesis , Vidrio
4.
J Chromatogr A ; 1724: 464898, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38669941

RESUMEN

The present research work was dedicated to developing an efficient method based on liquid-liquid chromatography (centrifugal partition chromatography, CPC) applicable to routine purifications of ochratoxins (OT) from the liquid culture of the strain A. albertensis SZMC 2107. The crude extract contained numerous components in addition to OTA (90.1 %,) and OTB (1.1 %,) according to HPLC examinations. For the separation of OTs by CPC, several tertiary systems based on acetonitrile, acetone, and short-chain alcohols were examined to find the most applicable biphasic system. The hexane/i-propanol/water 35:15:50 system supplemented with 0.1 % acetic acid was found to be the most efficient for use in CPC separation. Using liquid-liquid instrumental separation, the two OTs, namely OTA (2.23 mg) and OTB (0.031 mg), were successfully isolated with 96.3 % and-72.8 % purity, respectively, from 1 L ferment broth. The identities and purities of the purified components were confirmed and the performance parameters of each separation step and the whole procedure were determined. The developed method could be used effectively to purify OTs for analytical or toxicological applications.


Asunto(s)
Ocratoxinas , Ocratoxinas/análisis , Ocratoxinas/aislamiento & purificación , Ocratoxinas/química , Cromatografía Líquida de Alta Presión/métodos , Centrifugación/métodos , Cromatografía Liquida/métodos , Acetonitrilos/química , Acetona/química
5.
J Fungi (Basel) ; 9(12)2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38132749

RESUMEN

Fluconazole resistance is commonly encountered in Candida auris, and the yeast frequently displays resistance to other standard drugs, which severely limits the number of effective therapeutic agents against this emerging pathogen. In this study, we aimed to investigate the effect of acquired azole resistance on the viability, stress response, and virulence of this species. Fluconazole-, posaconazole-, and voriconazole- resistant strains were generated from two susceptible C. auris clinical isolates (0381, 0387) and compared under various conditions. Several evolved strains became pan-azole-resistant, as well as echinocandin-cross-resistant. While being pan-azole-resistant, the 0381-derived posaconazole-evolved strain colonized brain tissue more efficiently than any other strain, suggesting that fitness cost is not necessarily a consequence of resistance development in C. auris. All 0387-derived evolved strains carried a loss of function mutation (R160S) in BCY1, an inhibitor of the PKA pathway. Sequencing data also revealed that posaconazole treatment can result in ERG3 mutation in C. auris. Despite using the same mechanisms to generate the evolved strains, both genotype and phenotype analysis highlighted that the development of resistance was unique for each strain. Our data suggest that C. auris triazole resistance development is a highly complex process, initiated by several pleiotropic factors.

6.
Data Brief ; 49: 109354, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37448737

RESUMEN

This paper presents geospatial datasets, figures, and tables illustrating i) the location and total area of fish farms under cultivation; and ii) the spatiotemporal dynamics of reed cover in Hungarian fishponds generated from the published study of Sharma et al., [1]. Preliminary data for fish farm locations were obtained from the Institute of Agricultural Economics (AKI), followed by significant refinement based on high-resolution Google Earth Pro-imagery. The fishpond area dataset was validated against the values reported in annual statistical reports on aquaculture. In order to map reed vegetation freely available Sentinel-2 imagery (between 2017 and 2021) was accessed from the Copernicus Open Access Hub [2] and emergent macrophyte cover was classified using the NDVI-based threshold values [1]. Scientists, policymakers, and fish farmers can all benefit from such geospatial datasets. It could be used to monitor the extent of fishponds in Hungary and to design farm-level reed management plans to optimize the provision of ecological and production services.

7.
Microbiol Spectr ; 11(3): e0031523, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37036336

RESUMEN

Certain members of the order Mucorales can cause a life-threatening, often-fatal systemic infection called mucormycosis. Mucormycosis has a high mortality rate, which can reach 96 to 100% depending on the underlying condition of the patient. Mucorales species are intrinsically resistant to most antifungal agents, such as most of the azoles, which makes mucormycosis treatment challenging. The main target of azoles is the lanosterol 14α-demethylase (Erg11), which is responsible for an essential step in the biosynthesis of ergosterol, the main sterol component of the fungal membrane. Mutations in the erg11 gene can be associated with azole resistance; however, resistance can also be mediated by loss of function or mutation of other ergosterol biosynthetic enzymes, such as the sterol 24-C-methyltransferase (Erg6). The genome of Mucor lusitanicus encodes three putative erg6 genes (i.e., erg6a, erg6b, and erg6c). In this study, the role of erg6 genes in azole resistance of Mucor was analyzed by generating and analyzing knockout mutants constructed using the CRISPR-Cas9 technique. Susceptibility testing of the mutants suggested that one of the three genes, erg6b, plays a crucial role in the azole resistance of Mucor. The sterol composition of erg6b knockout mutants was significantly altered compared to that of the original strain, and it revealed the presence of at least four alternative sterol biosynthesis pathways leading to formation of ergosterol and other alternative, nontoxic sterol products. Dynamic operation of these pathways and the switching of biosynthesis from one to the other in response to azole treatment could significantly contribute to avoiding the effects of azoles by these fungi. IMPORTANCE The fungal membrane contains ergosterol instead of cholesterol, which offers a specific point of attack for the defense against pathogenic fungi. Indeed, most antifungal agents target ergosterol or its biosynthesis. Mucormycoses-causing fungi are resistant to most antifungal agents, including most of the azoles. For this reason, the drugs of choice to treat such infections are limited. The exploration of ergosterol biosynthesis is therefore of fundamental importance to understand the azole resistance of mucormycosis-causing fungi and to develop possible new control strategies. Characterization of sterol 24-C-methyltransferase demonstrated its role in the azole resistance and virulence of M. lusitanicus. Moreover, our experiments suggest that there are at least four alternative pathways for the biosynthesis of sterols in Mucor. Switching between pathways may contribute to the maintenance of azole resistance.


Asunto(s)
Antifúngicos , Mucormicosis , Humanos , Antifúngicos/farmacología , Esteroles/metabolismo , Esteroles/farmacología , Mucor/genética , Mucor/metabolismo , Vías Biosintéticas , Farmacorresistencia Fúngica/genética , Azoles/farmacología , Ergosterol , Pruebas de Sensibilidad Microbiana
8.
Toxins (Basel) ; 15(2)2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36828448

RESUMEN

In routine measurements, the length of the analysis time and nfumber of samples analysed during a time unit are crucial parameters, which are especially important for the food analysis, particularly in the case of mycotoxin determinations. High-resolution equipment, including time-of-flight or Orbitrap analyzators, can provide stable instrumental background for high-throughput analyses. In this report, a short, 1 min MS-based multi-mycotoxin method was developed with the application of a short column as a reduced chromatographic separation, taking advantages of the multiplexing and high-resolution capability of the QExactive Orbitrap MS possessing sub-1 ppm mass accuracy. The performance of the method was evaluated regarding selectivity, LOD, LOQ, linearity, matrix effect, and recovery, and compared to a UHPLC-MS/MS method. The final multiplexing method was able to quantify 11 mycotoxins in defined ranges (aflatoxins (corn, 2.8-600 µg/kg; wheat, 1.5-350 µg/kg), deoxynivalenol (corn, 640-9600 µg/kg; wheat, 128-3500 µg/kg), fumonisins (corn, 20-1500 µg/kg; wheat, 30-3500 µg/kg), HT-2 (corn, 64-5200 µg/kg; wheat, 61-3500 µg/kg), T-2 (corn, 10-800 µg/kg; wheat, 4-250 µg/kg), ochratoxin (corn, 4.7-600 µg/kg; wheat, 1-1000 µg/kg), zearalenone (corn, 64-4800 µg/kg; wheat, 4-500 µg/kg)) within one minute in corn and wheat matrices at the MRL levels stated by the European Union.


Asunto(s)
Aflatoxinas , Micotoxinas , Ocratoxinas , Micotoxinas/análisis , Espectrometría de Masas en Tándem , Contaminación de Alimentos/análisis , Aflatoxinas/análisis , Ocratoxinas/análisis
9.
Molecules ; 28(3)2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36770839

RESUMEN

Surfactins are cyclic lipopeptides consisting of a ß-hydroxy fatty acid of variable chain length and a peptide ring of seven amino acids linked together by a lactone bridge, forming the cyclic structure of the peptide chain. These compounds are produced mainly by Bacillus species and are well regarded for their antibacterial, antifungal, and antiviral activities. For their surfactin production profiling, several Bacillus strains isolated from vegetable rhizospheres were identified by their fatty acid methyl ester profiles and were tested against phytopathogen bacteria and fungi. The isolates showed significant inhibition against of E. amylovora, X. campestris, B. cinerea, and F. culmorum and caused moderate effects on P. syringae, E. carotovora, A. tumefaciens, F. graminearum, F. solani, and C. gloeosporioides. Then, an HPLC-HESI-MS/MS method was applied to simultaneously carry out the quantitative and in-depth qualitative characterisations on the extracted ferment broths. More than half of the examined Bacillus strains produced surfactin, and the MS/MS spectra analyses of their sodiated precursor ions revealed a total of 29 surfactin variants and homologues, some of them with an extremely large number of peaks with different retention times, suggesting a large number of variations in the branching of their fatty acid chains.


Asunto(s)
Bacillus , Bacillus/metabolismo , Verduras/metabolismo , Espectrometría de Masas en Tándem , Rizosfera , Péptidos Cíclicos/química , Ácidos Grasos/metabolismo , Lipopéptidos/química , Bacillus subtilis/metabolismo
10.
Open Res Eur ; 3: 179, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-39036539

RESUMEN

Background: Many interventions, especially those linked to open science, have been proposed to improve reproducibility in science. To what extent these propositions are based on scientific evidence from empirical evaluations is not clear. Aims: The primary objective is to identify Open Science interventions that have been formally investigated regarding their influence on reproducibility and replicability. A secondary objective is to list any facilitators or barriers reported and to identify gaps in the evidence. Methods: We will search broadly by using electronic bibliographic databases, broad internet search, and contacting experts in the field of reproducibility, replicability, and open science. Any study investigating interventions for their influence on the reproducibility and replicability of research will be selected, including those studies additionally investigating drivers and barriers to the implementation and effectiveness of interventions. Studies will first be selected by title and abstract (if available) and then by reading the full text by at least two independent reviewers. We will analyze existing scientific evidence using scoping review and evidence gap mapping methodologies. Results: The results will be presented in interactive evidence maps, summarized in a narrative synthesis, and serve as input for subsequent research. Review registration: This protocol has been pre-registered on OSF under doi https://doi.org/10.17605/OSF.IO/D65YS.

11.
Front Plant Sci ; 13: 1034237, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36518497

RESUMEN

The utilization of microorganisms with biocontrol activity against fungal and bacterial pathogens of plants is recognized as a promising, effective, and environment-friendly strategy to protect agricultural crops. We report the glyphosate-tolerant Pseudomonas resinovorans SZMC 25872 isolate as a novel strain with antagonistic potential towards the plant pathogenic bacterium Agrobacterium tumefaciens. In our studies, the growth of the P. resinovorans SZMC 25872 and A. tumefaciens SZMC 14557 isolates in the presence of 74 different carbon sources, and the effect of 11 carbon sources utilized by both strains on the biocontrol efficacy was examined. Seven variations of media with different carbon sources were selected for the assays to observe the biocontrol potential of the P. resinovorans strain. Also, 50% concentrations of the cell-free culture filtrates (CCF) obtained from medium amended with L-alanine or succinic acid as sole carbon source were found to be effective for the growth suppression of A. tumefaciens by 83.03 and 56.80%, respectively. The effect of 7 media on siderophore amount and the activity of extracellular trypsin- and chymotrypsin-like proteases, as well as esterases were also evaluated. Significant positive correlation was found between the siderophore amount and the percentage of inhibition, and the inhibitory effect of the CCFs obtained from medium amended with succinic acid was eliminated in the presence of an additional iron source, suggesting that siderophores produced by P. resinovorans play an important role in its antagonistic potential. The metabolic profile analysis of the P. resinovorans SZMC 25872 strain, performed by high performance liquid chromatography - high resolution mass spectrometry (HPLC-HRMS), has identified several previously not reported metabolites that might play role in the antagonistic effect against A. tumefaciens. Based on our findings we suggest that the possible inhibition modes of A. tumefaciens SZMC 14557 by P. resinovorans SZMC 25872 include siderophore-mediated suppression, extracellular enzyme activities and novel bioactive metabolites.

12.
Artículo en Inglés | MEDLINE | ID: mdl-36048499

RESUMEN

We have previously published six esterified O-acyl (EFB1) and three N-acyl fumonisin B1 derivatives extracted from rice cultures inoculated with Fusarium verticillioides, amongst these the identification of N-palmitoyl-FB1 has been clearly established in a spiking experiment. At that time, it was assumed that as in the case of O-acyl-FB1 derivatives, linoleic-, oleic- or palmitic acid esterify through the OH group on the 3C or 5C atom of the carbon chain of the fumonisins. In our most recent experiments, we have synthetically acylated the FB1 toxin and subsequently purified 3-O-palmitoyl- and 5-O-palmitoyl-FB1 toxins in addition to the N-palmitoyl-FB1 toxin. They were identified and characterised using 1H and 13C NMR as well as LC-HRMS. Our aim was the identification of the previously detected O-acyl-FB1 derivatives over the course of a spiking experiment, which were obtained through the solid-phase fermentation of Fusarium verticillioides. By spiking the three synthesized and identified components one-by-one into the fungal culture extract and analysing these cultures using LC-MS, it was clearly demonstrated that the F. verticillioides strain produced both the 5-O-palmitoyl-FB1 and N-palmitoyl-FB1 toxins, but did not produce 3-O-palmitoyl-FB1. Thus, it is highly probable that the components thought to be 3-O-acyl-(linoleoyl-, oleoyl-, palmitoyl-) FB1 derivatives in our previous communication are presumably 10-O-acyl-FB1 derivatives. Since these acylated FB1 derivatives can occur naturally in e.g. maize, the use of these synthesized components as reference materials is of great importance in order to obtain accurate qualitative and quantitative data on the occurrence of acylated fumonisins in different matrices including maize based feed samples. The production of these substances has also made it possible to test their toxicity in cell culture and small animal experiments.


Asunto(s)
Fumonisinas , Fusarium , Animales , Carbono , Fumonisinas/análisis , Fusarium/química , Ácido Palmítico/química , Extractos Vegetales
13.
Commun Biol ; 5(1): 723, 2022 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-35864155

RESUMEN

Several strikingly different aerobic and anaerobic pathways of nicotinate breakdown are extant in bacteria. Here, through reverse genetics and analytical techniques we elucidated in Aspergillus nidulans, a complete eukaryotic nicotinate utilization pathway. The pathway extant in this fungus and other ascomycetes, is quite different from bacterial ones. All intermediate metabolites were identified. The cognate proteins, encoded by eleven genes (hxn) mapping in three clusters are co-regulated by a specific transcription factor. Several enzymatic steps have no prokaryotic equivalent and two metabolites, 3-hydroxypiperidine-2,6-dione and 5,6-dihydroxypiperidine-2-one, have not been identified previously in any organism, the latter being a novel chemical compound. Hydrolytic ring opening results in α-hydroxyglutaramate, a compound not detected in analogous prokaryotic pathways. Our earlier phylogenetic analysis of Hxn proteins together with this complete biochemical pathway illustrates convergent evolution of catabolic pathways between fungi and bacteria.


Asunto(s)
Aspergillus nidulans , Niacina , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Eucariontes/metabolismo , Niacina/metabolismo , Filogenia , Factores de Transcripción/metabolismo
14.
Foods ; 11(12)2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35741908

RESUMEN

Hydrolysis of olive, rapeseed, linseed, almond, peanut, grape seed and menhaden oils was performed with commercial lipases of Aspergillus niger, Rhizopus oryzae, Rhizopus niveus, Rhizomucor miehei and Candida rugosa. In chromogenic plate tests, olive, rapeseed, peanut and linseed oils degraded well even after 2 h of incubation, and the R. miehei, A. niger and R. oryzae lipases exhibited the highest overall action against the oils. Gas chromatography analysis of vegetable oils hydrolyzed by R. miehei lipase revealed about 1.1 to 38.4-fold increases in the concentrations of palmitic, stearic, oleic, linoleic and α-linolenic acids after the treatment, depending on the fatty acids and the oil. The major polyunsaturated fatty acids produced by R. miehei lipase treatment from menhaden oil were linoleic, α-linolenic, hexadecanedioic, eicosapentaenoic, docosapentaenoic and docosahexaenoic acids, with yields from 12.02 to 52.85 µg/mL reaction mixture. Folin-Ciocalteu and ferric reducing power assays demonstrated improved antioxidant capacity for most tested oils after the lipase treatment in relation to the concentrations of some fatty acids. Some lipase-treated and untreated samples of oils, at 1.25 mg/mL lipid concentration, inhibited the growth of food-contaminating bacteria. The lipid mixtures obtained can be reliable sources of extractable fatty acids with health benefits.

15.
Toxins (Basel) ; 14(4)2022 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-35448861

RESUMEN

Aflatoxin B1 (AFB1) is a potent mycotoxin and natural carcinogen. The primary producers of AFB1 are Aspergillus flavus and A. parasiticus. Sterigmatocystin (STC), another mycotoxin, shares its biosynthetic pathway with aflatoxins. While there are abundant data on the biological effects of AFB1, STC is not well characterised. According to published data, AFB1 is more harmful to biological systems than STC. It has been suggested that STC is about one-tenth as potent a mutagen as AFB1 as measured by the Ames test. In this research, the biological effects of S9 rat liver homogenate-activated and non-activated STC and AFB1 were compared using two different biomonitoring systems, SOS-Chromotest and a recently developed microinjection zebrafish embryo method. When comparing the treatments, activated STC caused the highest mortality and number of DNA strand breaks across all injected volumes. Based on the E. coli SOS-Chromotest, the two toxins exerted the same genotoxicities. Moreover, according to the newly developed zebrafish microinjection method, STC appeared more toxic than AFB1. The scarce information correlating AFB1 and STC toxicity suggests that AFB1 is a more potent genotoxin than STC. Our findings contradict this assumption and illustrate the need for more complex biomonitoring systems for mycotoxin risk assessment.


Asunto(s)
Aflatoxinas , Esterigmatocistina , Aflatoxina B1/toxicidad , Animales , Escherichia coli , Microinyecciones , Esterigmatocistina/toxicidad , Pez Cebra
16.
J Fungi (Basel) ; 7(3)2021 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-33808917

RESUMEN

ß-Galactosidases of Mucoromycota are rarely studied, although this group of filamentous fungi is an excellent source of many industrial enzymes. In this study, 99 isolates from the genera Lichtheimia, Mortierella, Mucor, Rhizomucor, Rhizopus and Umbelopsis, were screened for their ß-galactosidase activity using a chromogenic agar approach. Ten isolates from the best producers were selected, and the activity was further investigated in submerged (SmF) and solid-state (SSF) fermentation systems containing lactose and/or wheat bran substrates as enzyme production inducers. Wheat bran proved to be efficient for the enzyme production under both SmF and SSF conditions, giving maximum specific activity yields from 32 to 12,064 U/mg protein and from 783 to 22,720 U/mg protein, respectively. Oligosaccharide synthesis tests revealed the suitability of crude ß-galactosidases from Lichtheimia ramosa Szeged Microbiological Collection (SZMC) 11360 and Rhizomucor pusillus SZMC 11025 to catalyze transgalactosylation reactions. In addition, the crude enzyme extracts had transfructosylation activity, resulting in the formation of fructo-oligosaccharide molecules in a sucrose-containing environment. The maximal oligosaccharide concentration varied between 0.0158 and 2.236 g/L depending on the crude enzyme and the initial material. Some oligosaccharide-enriched mixtures supported the growth of probiotics, indicating the potential of the studied enzyme extracts in future prebiotic synthesis processes.

17.
mSphere ; 5(5)2020 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-33115837

RESUMEN

The number of invasive infections caused by Candida species is increasing worldwide. The incidence of candidiasis cases caused by non-albicans Candida species, such as Candida parapsilosis, is also increasing, and non-albicans Candida species are currently responsible for more invasive infections than C. albicans Additionally, while the development of azole resistance during invasive disease with C. albicans remains uncommon, azole-resistant C. parapsilosis strains are frequently isolated in the hospital setting. In this study, we applied direct selection to generate azole-adapted and azole-evolved C. parapsilosis strains in order to examine the effect of azole resistance development on fungal viability and pathogenesis progression. Depending on the drug applied, the different evolved strains developed distinct cross-resistance patterns: the fluconazole-evolved (FLUEVO) and voriconazole-evolved (VOREVO) strains gained resistance to fluconazole and voriconazole only, while posaconazole evolution resulted in cross-resistance to all azoles and the posaconazole-evolved (POSEVO) strains showed higher echinocandin MIC values than the FLUEVO and VOREVO strains. Whole-genome sequencing results identified the development of different resistance mechanisms in the evolved strains: the FLUEVO and VOREVO strains harbored amino acid substitutions in Mrr1p (A808T and N394Y, respectively), and the POSEVO strain harbored an amino acid change in Erg3p (D14Y). By revealing increased efflux pump activity in both the FLUEVO and the VOREVO strains, along with the altered sterol composition of the POSEVO strain, we now highlight the impact of the above-mentioned amino acid changes in C. parapsilosis azole resistance development. We further revealed that the virulence of this species was only slightly or partially affected by fluconazole and voriconazole adaptation, while it significantly decreased after posaconazole adaptation. Our results suggest that triazole adaptation can result in azole cross-resistance and that this process may also result in virulence alterations in C. parapsilosis, depending on the applied drug.IMPORTANCECandida parapsilosis causes life-threatening fungal infections. In the last 2 decades, the increasing number of azole-resistant C. parapsilosis clinical isolates has been attributable to the overuse and misuse of fluconazole, the first-line antifungal agent most commonly used in several countries. To date, the range of applicable antifungal drugs is limited. As a consequence, it is essential to understand the possible mechanisms of antifungal resistance development and their effect on virulence in order to optimize antifungal treatment strategies in the clinical setting. Our results revealed that the prolonged exposure to azoles resulted not only in azole resistance but also in cross-resistance development. Our data further indicate that resistance development may occur through different mechanisms that can also alter the virulence of C. parapsilosis These results highlight the consequences of prolonged drug usage and suggest the need for developing alternative antifungal treatment strategies in clinical practice.


Asunto(s)
Antifúngicos/farmacología , Candida parapsilosis/efectos de los fármacos , Candida parapsilosis/patogenicidad , Farmacorresistencia Fúngica/genética , Estrés Fisiológico/efectos de los fármacos , Triazoles/farmacología , Animales , Candida parapsilosis/genética , Candidiasis/microbiología , Evolución Molecular , Femenino , Ratones , Ratones Endogámicos BALB C , Pruebas de Sensibilidad Microbiana
18.
Microorganisms ; 8(7)2020 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-32668673

RESUMEN

In resistance tests to Fusarium head blight (FHB), the mixing of inocula before inoculation is normal, but no information about the background of mixing was given. Therefore, four experiments (2013-2015) were made with four independent isolates, their all-possible (11) mixtures and a control. Four cultivars with differing FHB resistance were used. Disease index (DI), Fusarium damaged kernels (FDK) and deoxynivalenol (DON) were evaluated. The isolates used were not stable in aggressiveness. Their mixtures did not also give a stable aggressiveness; it depended on the composition of mix. The three traits diverged in their responses. After the mixing, the aggressiveness was always less than that of the most pathogenic component was. However, in most cases it was significantly higher than the arithmetical mean of the participating isolates. A mixture was not better than a single isolate was. The prediction of the aggressiveness level is problematic even if the aggressiveness of the components was tested. Resistance expression is different in the mixing variants and in the three traits tested. Of them, DON is the most sensitive. More reliable resistance and toxin data can be received when instead of one more independent isolates are used. This is important when highly correct data are needed (genetic research or cultivar registration).

19.
Plants (Basel) ; 9(8)2020 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-32722377

RESUMEN

In previous research, conidium concentrations varying between 10,000 and 1,000,000/mL have not been related to any aggressiveness test. Therefore, two Fusarium graminearum and two Fusarium culmorum isolates were tested in the field on seven genotypes highly differing in resistance at no dilution, and 1:1, 1:2, 1:4, 1:8, and 1:16 dilutions in two years (2013 and 2014). The isolates showed different aggressiveness, which changed significantly at different dilution rates for disease index (DI), Fusarium-damaged kernels (FDK), and deoxynivalenol (DON). The traits also had diverging responses to the infection. The effect of the dilution could not be forecasted. The genotype ranks also varied. Dilution seldomly increased aggressiveness, but often lower aggressiveness occurred at high variation. The maximum and minimum values varied between 15% and 40% for traits and dilutions. The reductions between the non-diluted and diluted values (total means) for DI ranged from 6% and 33%, for FDK 8.3-37.7%, and for DON 5.8-44.8%. The most sensitive and most important trait was DON. The introduction of the aggressiveness test provides improved regulation compared to the uncontrolled manipulation of the conidium concentration. The use of more isolates significantly increases the credibility of phenotyping in genetic and cultivar registration studies.

20.
Microorganisms ; 8(5)2020 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-32344937

RESUMEN

Flowering is the most favorable host stage for Fusarium infection in wheat, which is called the susceptibility window (SW). It is not known how long it takes, how it changes in different resistance classes, nor how stable is the plant reaction in the SW. We have no information, how the traits disease index (DI), Fusarium-damaged kernel rate (FDK), and deoxynivalenol (DON) respond within the 16 days period. Seven winter wheat genotypes differing in resistance were tested (2013-2014). Four Fusarium isolates were used for inoculation at mid-anthesis, and 4, 8, 11, 13, and 16 days thereafter. The DI was not suitable to determine the length of the SW. In the Fusarium-damaged kernels (FDK), a sharp 50% decrease was found after the 8th day. The largest reduction (above 60%) was recorded for DON at each resistance level between the 8th and 11th day. This trait showed the SW most precisely. The SW is reasonably stable in the first 8-9 days. This fits for all resistance classes. The use of four isolates significantly improved the reliability and credit of the testing. The stable eight-day long SW helps to reduce the number of inoculations. The most important trait to determine the SW is the DON reaction and not the visual symptoms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...