Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38746266

RESUMEN

Adolescence is a period of increased risk taking, including increased alcohol and drug use. Multiple clinical studies report a positive relationship between adolescent alcohol consumption and risk of developing an alcohol use disorder (AUD) in adulthood. However, few preclinical studies have attempted to tease apart the biological contributions of adolescent alcohol exposure, independent of other social, environmental, and stress factors, and studies that have been conducted show mixed results. Here we use several adolescent voluntary consumption of alcohol models, conducted across three institutes and with two rodent species, to investigate the ramifications of adolescent alcohol consumption on adulthood alcohol consumption in controlled, pre-clinical environments. We consistently demonstrate a lack of increase in adulthood alcohol consumption. This work highlights that risks seen in both human datasets and other murine drinking models may be due to unique social and environmental factors - some of which may be unique to humans. HIGHLIGHTS: Adolescent drinking-in-the-dark (DID) binge drinking does not increase adulthood consumption in a DID model or a two bottle choice model in male and female SST-Cre:Ai9 miceAdolescent pair-housed intermittent access consumption of alcohol does not increase adulthood consumption in an identical adulthood model in male and female C57BL/6J miceAdolescent intermittent access to alcohol does not increase adulthood consumption in male and female Wistar ratsThese complementary datasets across murine models and institutions highlight the need to consider human social factors as well as biological factors.

2.
Addict Neurosci ; 92023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38152067

RESUMEN

Alcohol use disorder (AUD) produces cognitive deficits, indicating a shift in prefrontal cortex (PFC) function. PFC glutamate neurotransmission is mostly mediated by α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type ionotropic receptors (AMPARs); however preclinical studies have mostly focused on other receptor subtypes. Here we examined the impact of early withdrawal from chronic ethanol on AMPAR function in the mouse medial PFC (mPFC). Dependent male C57BL/6J mice were generated using the chronic intermittent ethanol vapor-two bottle choice (CIE-2BC) paradigm. Non-dependent mice had access to water and ethanol bottles but did not receive ethanol vapor. Naïve mice had no ethanol exposure. We used patch-clamp electrophysiology to measure glutamate neurotransmission in layer 2/3 prelimbic mPFC pyramidal neurons. Since AMPAR function can be impacted by subunit composition or plasticity-related proteins, we probed their mPFC expression levels. Dependent mice had higher spontaneous excitatory postsynaptic current (sEPSC) amplitude and kinetics compared to the Naïve/Non-dependent mice. These effects were seen during intoxication and after 3-8 days withdrawal, and were action potential-independent, suggesting direct enhancement of AMPAR function. Surprisingly, 3 days withdrawal decreased expression of genes encoding AMPAR subunits (Gria1/2) and synaptic plasticity proteins (Dlg4 and Grip1) in Dependent mice. Further analysis within the Dependent group revealed a negative correlation between Gria1 mRNA levels and ethanol intake. Collectively, these data establish a role for mPFC AMPAR adaptations in the glutamatergic dysfunction associated with ethanol dependence. Future studies on the underlying AMPAR plasticity mechanisms that promote alcohol reinforcement, seeking, drinking and relapse behavior may help identify new targets for AUD treatment.

3.
Br J Pharmacol ; 180(11): 1500-1515, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36537731

RESUMEN

BACKGROUND AND PURPOSE: A major problem managing alcohol use disorder is the high vulnerability to relapse, even after long periods of abstinence. Chronic alcohol use dysregulates stress responsivity, rendering this system hyporesponsive and making individuals vulnerable to relapse. Orexin (hypocretin) plays a role in diverse physiological processes, including stress. Orexin neurons in the hypothalamus, project to the infralimbic cortex. This study asked does infralimbic cortex orexin transmission play a significant role in stress-induced reinstatement of alcohol-seeking behaviour in alcohol-dependent rats. EXPERIMENTAL APPROACH: Male and female rats were trained to self-administer 10% alcohol (3 weeks) and then made dependent via chronic intermittent alcohol vapour exposure. Following extinction (5 days·week-1 at 8 h abstinence for 10 sessions), rats received an intra- infralimbic cortex microinfusion of the OX1/2 antagonist TCS 1102 (15 µg/0.5 µl per side) and then tested for footshock stress-induced reinstatement of alcohol seeking. In a separate cohort, orexin regulation of infralimbic cortex neuronal activity at the time of reinstatement was investigated using ex vivo electrophysiology. KEY RESULTS: TCS 1102 prevented reinstatement in dependent animals only. Moreover, Hcrtr mRNA expression in the hypothalamus and Hcrtr1/2 in the infralimbic cortex increased in alcohol-dependent animals at the time of testing. Dependence dampened basal orexin/OX receptor influence over infralimbic cortex GABAergic synapses (using TCS 1102) allow for greater stimulated orexin effects. CONCLUSION AND IMPLICATIONS: Infralimbic cortex transmission is implicate in stress-induced reinstatement of alcohol-seeking behaviour in subjects with a history of alcohol dependence and show maladaptive recruitment of infralimbic cortex transmission by alcohol dependence.


Asunto(s)
Alcoholismo , Femenino , Ratas , Masculino , Animales , Receptores de Orexina/metabolismo , Orexinas , Etanol/farmacología , Consumo de Bebidas Alcohólicas , Autoadministración , Extinción Psicológica , Comportamiento de Búsqueda de Drogas
4.
Int J Mol Sci ; 23(14)2022 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-35887190

RESUMEN

Alcohol use disorder (AUD) is a chronically relapsing disease characterized by loss of control in seeking and consuming alcohol (ethanol) driven by the recruitment of brain stress systems. However, AUD differs among the sexes: men are more likely to develop AUD, but women progress from casual to binge drinking and heavy alcohol use more quickly. The central amygdala (CeA) is a hub of stress and anxiety, with corticotropin-releasing factor (CRF)-CRF1 receptor and Gamma-Aminobutyric Acid (GABA)-ergic signaling dysregulation occurring in alcohol-dependent male rodents. However, we recently showed that GABAergic synapses in female rats are less sensitive to the acute effects of ethanol. Here, we used patch-clamp electrophysiology to examine the effects of alcohol dependence on the CRF modulation of rat CeA GABAergic transmission of both sexes. We found that GABAergic synapses of naïve female rats were unresponsive to CRF application compared to males, although alcohol dependence induced a similar CRF responsivity in both sexes. In situ hybridization revealed that females had fewer CeA neurons containing mRNA for the CRF1 receptor (Crhr1) than males, but in dependence, the percentage of Crhr1-expressing neurons in females increased, unlike in males. Overall, our data provide evidence for sexually dimorphic CeA CRF system effects on GABAergic synapses in dependence.


Asunto(s)
Alcoholismo , Núcleo Amigdalino Central , Animales , Núcleo Amigdalino Central/metabolismo , Hormona Liberadora de Corticotropina/metabolismo , Etanol/farmacología , Femenino , Humanos , Masculino , Ratas , Receptores de Hormona Liberadora de Corticotropina/genética , Receptores de Hormona Liberadora de Corticotropina/metabolismo , Sinapsis/metabolismo , Transmisión Sináptica , Ácido gamma-Aminobutírico/farmacología
5.
Biol Psychiatry ; 91(12): 1008-1018, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35430085

RESUMEN

BACKGROUND: Alcohol use disorder (AUD) is a leading preventable cause of death. The central amygdala (CeA) is a hub for stress and AUD, while dysfunction of the noradrenaline stress system is implicated in AUD relapse. METHODS: Here, we investigated whether alcohol (ethanol) dependence and protracted withdrawal alter noradrenergic regulation of the amygdala in rodents and humans. Male adult rats were housed under control conditions, subjected to chronic intermittent ethanol vapor exposure to induce dependence, or withdrawn from chronic intermittent ethanol vapor exposure for 2 weeks, and ex vivo electrophysiology, biochemistry (catecholamine quantification by high-performance liquid chromatography), in situ hybridization, and behavioral brain-site specific pharmacology studies were performed. We also used real-time quantitative polymerase chain reaction to assess gene expression of α1B, ß1, and ß2 adrenergic receptors in human postmortem brain tissue from men diagnosed with AUD and matched control subjects. RESULTS: We found that α1 receptors potentiate CeA GABAergic (gamma-aminobutyric acidergic) transmission and drive moderate alcohol intake in control rats. In dependent rats, ß receptors disinhibit a subpopulation of CeA neurons, contributing to their excessive drinking. Withdrawal produces CeA functional recovery with no change in local noradrenaline tissue concentrations, although there are some long-lasting differences in the cellular patterns of adrenergic receptor messenger RNA expression. In addition, postmortem brain analyses reveal increased α1B receptor messenger RNA in the amygdala of humans with AUD. CONCLUSIONS: CeA adrenergic receptors are key neural substrates of AUD. Identification of these novel mechanisms that drive alcohol drinking, particularly during the alcohol-dependent state, supports ongoing new medication development for AUD.


Asunto(s)
Alcoholismo , Núcleo Amigdalino Central , Consumo de Bebidas Alcohólicas , Animales , Núcleo Amigdalino Central/metabolismo , Etanol/farmacología , Humanos , Masculino , Norepinefrina , ARN Mensajero , Ratas , Receptores Adrenérgicos/metabolismo
6.
Neuropsychopharmacology ; 47(4): 847-856, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34837077

RESUMEN

A major barrier to remission from an alcohol use disorder (AUD) is the continued risk of relapse during abstinence. Assessing the neuroadaptations after chronic alcohol and repeated abstinence is important to identify mechanisms that may contribute to relapse. In this study, we used a rhesus macaque model of long-term alcohol use and repeated abstinence, providing a platform to extend mechanistic findings from rodents to primates. The central amygdala (CeA) displays elevated GABA release following chronic alcohol in rodents and in abstinent male macaques, highlighting this neuroadaptation as a conserved mechanism that may underlie excessive alcohol consumption. Here, we determined circulating interleukin-1ß (IL-1ß) levels, CeA transcriptomic changes, and the effects of IL-1ß and corticotropin releasing factor (CRF) signaling on CeA GABA transmission in male controls and abstinent drinkers. While no significant differences in peripheral IL-1ß or the CeA transcriptome were observed, pathway analysis identified several canonical immune-related pathways. We addressed this potential dysregulation of CeA immune signaling in abstient drinkers with an electrophysiological approach. We found that IL-1ß decreased CeA GABA release in controls while abstinent drinkers were less sensitive to IL-1ß's effects, suggesting adaptations in the neuromodulatory role of IL-1ß. In contrast, CRF enhanced CeA GABA release similarly in controls and abstinent drinkers, consistent with rodent studies. Notably, CeA CRF expression was inversely correlated with intoxication, suggesting that CRF levels during abstinence may predict future intoxication. Together, our findings highlight conserved and divergent actions of chronic alcohol on neuroimmune and stress signaling on CeA GABA transmission across rodents and macaques.


Asunto(s)
Abstinencia de Alcohol , Núcleo Amigdalino Central , Hormona Liberadora de Corticotropina , Interleucina-1beta , Transmisión Sináptica , Animales , Núcleo Amigdalino Central/fisiopatología , Hormona Liberadora de Corticotropina/metabolismo , Potenciales Postsinápticos Inhibidores , Interleucina-1beta/metabolismo , Macaca mulatta , Masculino , Ácido gamma-Aminobutírico/metabolismo
8.
Brain Sci ; 11(9)2021 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-34573170

RESUMEN

Alcohol dependence is associated with adverse consequences of alcohol (ethanol) use and is evident in most severe cases of alcohol use disorder (AUD). The central nucleus of the amygdala (CeA) plays a critical role in the development of alcohol dependence and escalation of alcohol consumption in dependent subjects. Molecular mechanisms underlying the CeA-driven behavioral changes are not well understood. Here, we examined the effects of alcohol on global gene expression in the CeA using a chronic intermittent ethanol (CIE) vapor model in rats and RNA sequencing (RNA-Seq). The CIE procedure resulted in robust changes in CeA gene expression during intoxication, as the number of differentially expressed genes (DEGs) was significantly greater than those expected by chance. Over-representation analysis of cell types, functional groups and molecular pathways revealed biological categories potentially important for the development of alcohol dependence in our model. Genes specific for astrocytes, myelinating oligodendrocytes, and endothelial cells were over-represented in the DEG category, suggesting that these cell types were particularly affected by the CIE procedure. The majority of the over-represented functional groups and molecular pathways were directly related to the functions of glial and endothelial cells, including extracellular matrix (ECM) organization, myelination, and the regulation of innate immune response. A coordinated regulation of several ECM metalloproteinases (e.g., Mmp2; Mmp14), their substrates (e.g., multiple collagen genes and myelin basic protein; Mbp), and a metalloproteinase inhibitor, Reck, suggests a specific mechanism for ECM re-organization in response to chronic alcohol, which may modulate neuronal activity and result in behavioral changes, such as an escalation of alcohol drinking. Our results highlight the importance of glial and endothelial cells in the effects of chronic alcohol exposure on the CeA, and demonstrate further insight into the molecular mechanisms of alcohol dependence in rats. These molecular targets may be used in future studies to develop therapeutics to treat AUD.

9.
Alcohol Alcohol ; 56(5): 581-588, 2021 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-33912894

RESUMEN

AIMS: Alcohol use disorder (AUD) is linked to hyperactivity of brain stress systems, leading to withdrawal states which drive relapse. AUD differs among the sexes, as men are more likely to have AUD than women, but women progress from casual use to binge and heavy alcohol use more quickly and are more likely to relapse into repetitive episodes of heavy drinking. In alcohol dependence animal models of AUD, the central amygdala (CeA) functions as a hub of stress and anxiety processing and gamma-Aminobutyric acid (GABA)ergic signaling within the CeA is involved in dependence-induced increases in alcohol consumption. We have shown dysregulation of CeA GABAergic synaptic signaling in alcohol dependence animal models, but previous studies have exclusively used males. METHODS: Here, we used whole-cell patch clamp electrophysiology to examine basal CeA GABAergic spontaneous inhibitory postsynaptic currents (sIPSC) and the effects of acute alcohol in both naïve and alcohol dependent rats of both sexes. RESULTS: We found that sIPSC kinetics differ between females and males, as well as between naïve and alcohol-dependent animals, with naïve females having the fastest current kinetics. Additionally, we find differences in baseline current kinetics across estrous cycle stages. In contrast to the increase in sIPSC frequency routinely found in males, acute alcohol (11-88 mM) had no effect on sIPSCs in naïve females, however the highest concentration of alcohol increased sIPSC frequency in dependent females. CONCLUSION: These results provide important insight into sex differences in CeA neuronal function and dysregulation with alcohol dependence and highlight the need for sex-specific considerations in the development of effective AUD treatment.


Asunto(s)
Alcoholismo/fisiopatología , Núcleo Amigdalino Central/efectos de los fármacos , Ácido gamma-Aminobutírico/efectos de los fármacos , Animales , Etanol/farmacología , Femenino , Masculino , Ratas , Ratas Sprague-Dawley
10.
J Neurosci ; 40(36): 6842-6853, 2020 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-32769108

RESUMEN

Excessive serotonin (5-HT) signaling plays a critical role in the etiology of alcohol use disorder. The central nucleus of the amygdala (CeA) is a key player in alcohol-dependence associated behaviors. The CeA receives dense innervation from the dorsal raphe nucleus, the major source of 5-HT, and expresses 5-HT receptor subtypes (e.g., 5-HT2C and 5-HT1A) critically linked to alcohol use disorder. Notably, the role of 5-HT regulating rat CeA activity in alcohol dependence is poorly investigated. Here, we examined neuroadaptations of CeA 5-HT signaling in adult, male Sprague Dawley rats using an established model of alcohol dependence (chronic intermittent alcohol vapor exposure), ex vivo slice electrophysiology and ISH. 5-HT increased frequency of sIPSCs without affecting postsynaptic measures, suggesting increased CeA GABA release in naive rats. In dependent rats, this 5-HT-induced increase of GABA release was attenuated, suggesting blunted CeA 5-HT sensitivity, which partially recovered in protracted withdrawal (2 weeks). 5-HT increased vesicular GABA release in naive and dependent rats but had split effects (increase and decrease) after protracted withdrawal indicative of neuroadaptations of presynaptic 5-HT receptors. Accordingly, 5-HT abolished spontaneous neuronal firing in naive and dependent rats but had bidirectional effects in withdrawn. Alcohol dependence and protracted withdrawal did not alter either 5-HT1A-mediated decrease of CeA GABA release or Htr1a expression but disrupted 5-HT2C-signaling without affecting Htr2c expression. Collectively, our study provides detailed insights into modulation of CeA activity by the 5-HT system and unravels the vulnerability of the CeA 5-HT system to chronic alcohol and protracted withdrawal.SIGNIFICANCE STATEMENT Elevated GABA signaling in the central nucleus of the amygdala (CeA) underlies key behaviors associated with alcohol dependence. The CeA is reciprocally connected with the dorsal raphe nucleus, the main source of serotonin (5-HT) in the mammalian brain, and excessive 5-HT signaling is critically implicated in the etiology of alcohol use disorder. Our study, using a well-established rat model of alcohol dependence, ex vivo electrophysiology and ISH, provides mechanistic insights into how both chronic alcohol exposure and protracted withdrawal dysregulate 5-HT signaling in the CeA. Thus, our study further expands our understanding of CeA cellular mechanisms involved in the pathophysiology of alcohol dependence and withdrawal.


Asunto(s)
Alcoholismo/metabolismo , Núcleo Amigdalino Central/metabolismo , Serotonina/metabolismo , Síndrome de Abstinencia a Sustancias/metabolismo , Transmisión Sináptica , Ácido gamma-Aminobutírico/metabolismo , Potenciales de Acción , Alcoholismo/fisiopatología , Animales , Núcleo Amigdalino Central/fisiología , Potenciales Postsinápticos Inhibidores , Masculino , Ratas , Ratas Sprague-Dawley , Síndrome de Abstinencia a Sustancias/fisiopatología
11.
Biol Psychiatry ; 88(12): 910-921, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-32680583

RESUMEN

BACKGROUND: Microglia, the primary immune cells of the brain, are implicated in alcohol use disorder. However, it is not known if microglial activation contributes to the transition from alcohol use to alcohol use disorder or is a consequence of alcohol intake. METHODS: We investigated the role of microglia in a mouse model of alcohol dependence using a colony stimulating factor 1 receptor inhibitor (PLX5622) to deplete microglia and a chronic intermittent ethanol vapor two-bottle choice drinking procedure. Additionally, we examined anxiety-like behavior during withdrawal. We then analyzed synaptic neuroadaptations in the central nucleus of the amygdala (CeA) and gene expression changes in the medial prefrontal cortex and CeA from the same animals used for behavioral studies. RESULTS: PLX5622 prevented escalations in voluntary alcohol intake and decreased anxiety-like behavior associated with alcohol dependence. PLX5622 also reversed expression changes in inflammatory-related genes and glutamatergic and GABAergic (gamma-aminobutyric acidergic) genes in the medial prefrontal cortex and CeA. At the cellular level in these animals, microglia depletion reduced inhibitory GABAA and excitatory glutamate receptor-mediated synaptic transmission in the CeA, supporting the hypothesis that microglia regulate dependence-induced changes in neuronal function. CONCLUSIONS: Our multifaceted approach is the first to link microglia to the molecular, cellular, and behavioral changes associated with the development of alcohol dependence, suggesting that microglia may also be critical for the development and progression of alcohol use disorder.


Asunto(s)
Alcoholismo , Consumo de Bebidas Alcohólicas , Alcoholismo/genética , Animales , Etanol , Genómica , Ratones , Microglía , Transmisión Sináptica
13.
Addict Biol ; 25(5): e12813, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-31339221

RESUMEN

Administration of selective serotonin reuptake inhibitors (SSRIs), typically used as antidepressants, induces long-lasting behavioral changes associated with alcohol use disorder (AUD). However, the contribution of SSRI (fluoxetine)-induced alterations in neurobiological processes underlying alcohol relapse such as endocannabinoid and glutamate signaling in the central amygdala (CeA) remains largely unknown. We utilized an integrative approach to study the effects of repeated fluoxetine administration during abstinence on ethanol drinking. Gene expression and biochemical and electrophysiological studies explored the hypothesis that dysregulation in glutamatergic and endocannabinoid mechanisms in the CeA underlie the susceptibility to alcohol relapse. Cessation of daily treatment with fluoxetine (10 mg/kg) during abstinence resulted in a marked increase in ethanol seeking during re-exposure periods. The increase in ethanol self-administration was associated with (a) reductions in levels of the endocannabinoids N-arachidonoylethanolomine and 2-arachidonoylglycerol in the CeA, (b) increased amygdalar gene expression of cannabinoid type-1 receptor (CB1), N-acyl phosphatidylethanolamine phospholipase D (Nape-pld), fatty acid amid hydrolase (Faah), (c) decreased amygdalar gene expression of ionotropic AMPA (GluA2 and GluA4) and metabotropic (mGlu3) glutamate receptors, and (d) increased glutamatergic receptor function. Overall, our data suggest that the administration of the antidepressant fluoxetine during abstinence dysregulates endocannabinoid signaling and glutamatergic receptor function in the amygdala, facts that likely facilitate alcohol drinking behavior during relapse.


Asunto(s)
Alcoholismo/fisiopatología , Núcleo Amigdalino Central/efectos de los fármacos , Comportamiento de Búsqueda de Drogas/efectos de los fármacos , Endocannabinoides/metabolismo , Fluoxetina/farmacología , Ácido Glutámico/metabolismo , Animales , Modelos Animales de Enfermedad , Masculino , Ratas , Ratas Wistar , Recurrencia , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Transducción de Señal/efectos de los fármacos , Síndrome de Abstinencia a Sustancias/fisiopatología
14.
Brain Sci ; 9(12)2019 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-31817854

RESUMEN

Myeloid differentiation primary response protein (MyD88) is a critical neuroimmune adaptor protein in TLR (Toll-like receptor) and IL-1R (Interleukin-1 receptor) signaling complexes. These two pro-inflammatory families play an important role in the neurobiology of alcohol use disorder, specifically MyD88 regulates ethanol drinking, ethanol-induced sedation, and ethanol-induced deficits in motor coordination. In this study, we examined the role of MyD88 in mediating the effects of IL-1ß and ethanol on GABAergic transmission in the central amygdala (CeA) of male mice using whole-cell patch-clamp recordings in combination with pharmacological (AS-1, a mimetic that prevents MyD88 recruitment by IL-1R) and genetic (Myd88 knockout mice) approaches. We demonstrate through both approaches that IL-1ß and ethanol's modulatory effects at CeA GABA synapses are not dependent on MyD88. Myd88 knockout potentiated IL-1ß's actions in reducing postsynaptic GABAA receptor function. Pharmacological inhibition of MyD88 modulates IL-1ß's action at CeA GABA synapses similar to Myd88 knockout mice. Additionally, ethanol-induced CeA GABA release was greater in Myd88 knockout mice compared to wildtype controls. Thus, MyD88 is not essential to IL-1ß or ethanol regulation of CeA GABA synapses but plays a role in modulating the magnitude of their effects, which may be a potential mechanism by which it regulates ethanol-related behaviors.

15.
Brain Behav Immun ; 75: 208-219, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30791967

RESUMEN

The interleukin-1 system (IL-1) is a prominent pro-inflammatory pathway responsible for the initiation and regulation of immune responses. Human genetic and preclinical studies suggest a critical role for IL-1ß signaling in ethanol drinking and dependence, but little is known about the effects of chronic ethanol on the IL-1 system in addiction-related brain regions such as the central amygdala (CeA). In this study, we generated naïve, non-dependent (Non-Dep) and dependent (Dep) male mice using a paradigm of chronic-intermittent ethanol vapor exposure interspersed with two-bottle choice to examine 1) the expression of IL-1ß, 2) the role of the IL-1 system on GABAergic transmission, and 3) the potential interaction with the acute effects of ethanol in the CeA. Immunohistochemistry with confocal microscopy was used to assess expression of IL-1ß in microglia and neurons in the CeA, and whole-cell patch clamp recordings were obtained from CeA neurons to measure the effects of IL-1ß (50 ng/ml) or the endogenous IL-1 receptor antagonist (IL-1ra; 100 ng/ml) on action potential-dependent spontaneous inhibitory postsynaptic currents (sIPSCs). Overall, we found that IL-1ß expression is significantly increased in microglia and neurons of Dep compared to Non-Dep and naïve mice, IL-1ß and IL-1ra bi-directionally modulate GABA transmission through both pre- and postsynaptic mechanisms in all three groups, and IL-1ß and IL-1ra do not alter the facilitation of GABA release induced by acute ethanol. These data suggest that while ethanol dependence induces a neuroimmune response in the CeA, as indicated by increased IL-1ß expression, this does not significantly alter the neuromodulatory role of IL-1ß on synaptic transmission.


Asunto(s)
Núcleo Amigdalino Central/efectos de los fármacos , Etanol/administración & dosificación , Interleucina-1beta/biosíntesis , Ácido gamma-Aminobutírico/metabolismo , Animales , Núcleo Amigdalino Central/metabolismo , Depresores del Sistema Nervioso Central/farmacología , Etanol/efectos adversos , Etanol/toxicidad , Neuronas GABAérgicas/efectos de los fármacos , Expresión Génica/efectos de los fármacos , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Proteína Antagonista del Receptor de Interleucina 1/metabolismo , Proteína Antagonista del Receptor de Interleucina 1/farmacología , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Receptores de GABA-A/metabolismo , Transmisión Sináptica/efectos de los fármacos
16.
Neuropharmacology ; 133: 470-480, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29471053

RESUMEN

Excessive alcohol consumption in humans induces deficits in decision making and emotional processing, which indicates a dysfunction of the prefrontal cortex (PFC). The present study aimed to determine the impact of chronic intermittent ethanol (CIE) inhalation on mouse medial PFC pyramidal neurons. Data were collected 6-8 days into withdrawal from 7 weeks of CIE exposure, a time point when mice exhibit behavioral symptoms of withdrawal. We found that spine maturity in prelimbic (PL) layer 2/3 neurons was increased, while dendritic spines in PL layer 5 neurons or infralimbic (IL) neurons were not affected. Corroborating these morphological observations, CIE enhanced glutamatergic transmission in PL layer 2/3 pyramidal neurons, but not IL layer 2/3 neurons. Contrary to our predictions, these cellular alterations were associated with improved, rather than impaired, performance in reversal learning and strategy switching tasks in the Barnes maze at an earlier stage of chronic ethanol exposure (5-7 days withdrawal from 3 to 4 weeks of CIE), which could result from the anxiety-like behavior associated with ethanol withdrawal. Altogether, this study adds to a growing body of literature indicating that glutamatergic activity in the PFC is upregulated following chronic ethanol exposure, and identifies PL layer 2/3 pyramidal neurons as a sensitive target of synaptic remodeling. It also indicates that the Barnes maze is not suitable to detect deficits in cognitive flexibility in CIE-withdrawn mice.


Asunto(s)
Depresores del Sistema Nervioso Central/administración & dosificación , Etanol/administración & dosificación , Corteza Prefrontal/patología , Células Piramidales/fisiología , Transducción de Señal/efectos de los fármacos , Síndrome de Abstinencia a Sustancias/patología , Alcoholismo/complicaciones , Análisis de Varianza , Animales , Espinas Dendríticas/clasificación , Espinas Dendríticas/efectos de los fármacos , Espinas Dendríticas/fisiología , Técnicas In Vitro , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Endogámicos C57BL , Técnicas de Placa-Clamp , Células Piramidales/efectos de los fármacos , Síndrome de Abstinencia a Sustancias/etiología , Potenciales Sinápticos/efectos de los fármacos , Potenciales Sinápticos/fisiología
17.
Biol Psychiatry ; 84(3): 193-201, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29198469

RESUMEN

BACKGROUND: Despite the high cost and widespread prevalence of alcohol use disorders, treatment options are limited, underscoring the need for new, effective medications. Previous results using protein kinase C epsilon (PKCε) knockout mice, RNA interference against PKCε, and peptide inhibitors of PKCε predict that small-molecule inhibitors of PKCε should reduce alcohol consumption in humans. METHODS: We designed a new class of PKCε inhibitors based on the Rho-associated protein kinase (ROCK) inhibitor Y-27632. In vitro kinase and binding assays were used to identify the most potent compounds. Their effects on ethanol-stimulated synaptic transmission; ethanol, sucrose, and quinine consumption; ethanol-induced loss of righting; and ethanol clearance were studied in mice. RESULTS: We identified two compounds that inhibited PKCε with Ki <20 nM, showed selectivity for PKCε over other kinases, crossed the blood-brain barrier, achieved effective concentrations in mouse brain, prevented ethanol-stimulated gamma-aminobutyric acid release in the central amygdala, and reduced ethanol consumption when administered intraperitoneally at 40 mg/kg in wild-type but not in Prkce-/- mice. One compound also reduced sucrose and saccharin consumption, while the other was selective for ethanol. Both transiently impaired locomotion through an off-target effect that did not interfere with their ability to reduce ethanol intake. One compound prolonged recovery from ethanol-induced loss of righting but this was also due to an off-target effect since it was present in Prkce-/- mice. Neither altered ethanol clearance. CONCLUSIONS: These results identify lead compounds for development of PKCε inhibitors that reduce alcohol consumption.


Asunto(s)
Consumo de Bebidas Alcohólicas/tratamiento farmacológico , Núcleo Amigdalino Central/enzimología , Proteína Quinasa C-epsilon/genética , Inhibidores de Proteínas Quinasas/farmacología , Transmisión Sináptica/efectos de los fármacos , Alcoholismo/enzimología , Alcoholismo/fisiopatología , Amidas/farmacocinética , Amidas/farmacología , Animales , Núcleo Amigdalino Central/efectos de los fármacos , Núcleo Amigdalino Central/fisiopatología , Depresores del Sistema Nervioso Central/farmacología , Condicionamiento Psicológico , Modelos Animales de Enfermedad , Etanol , Inyecciones Intraperitoneales , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Inhibidores de Proteínas Quinasas/farmacocinética , Piridinas/farmacocinética , Piridinas/farmacología
18.
Neuropharmacology ; 125: 418-428, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28807676

RESUMEN

Corticotropin-releasing factor (CRF) signaling in the central nucleus of the amygdala (CeA) is hypothesized to drive the development of alcohol dependence, as it regulates ethanol intake and several anxiogenic behaviors linked to withdrawal. Excitatory glutamatergic neurotransmission contributes to alcohol reinforcement, tolerance and dependence. Therefore, in this study we used in vitro slice electrophysiology to investigate the effects of CRF and its receptor subtype (CRF1 and CRF2) antagonists on both evoked and spontaneous action potential-independent glutamatergic transmission in the CeA of naive and ethanol-dependent Sprague-Dawley rats. We found that CRF (25-200 nM) concentration-dependently diminished evoked compound excitatory postsynaptic potentials (EPSPs), but increased miniature excitatory postsynaptic current (mEPSC) frequencies similarly in CeA neurons of both naïve and ethanol-dependent rats, indicating reduced evoked glutamatergic responses and enhanced vesicular glutamate release, respectively. This CRF-induced vesicular glutamate release was prevented by the CRF1/2 antagonist (Astressin B) and the CRF1 antagonist (R121919), but not by the CRF2 antagonist (Astressin 2B). Similarly, CRF's effects on evoked glutamatergic responses were completely blocked by CRF1 antagonism, but only slightly decreased in the presence of the CRF2 antagonist. Moreover, CRF1 antagonism reveals a tonic facilitation of vesicular glutamate, whereas the CRF2 antagonism revealed a tonic inhibition of vesicular glutamate release. Collectively our data show that CRF primarily acts at presynaptic CRF1 to produce opposite effects on CeA evoked and spontaneous glutamate release and that the CRF system modulates CeA glutamatergic synapses throughout the development of alcohol dependence.


Asunto(s)
Alcoholismo/metabolismo , Núcleo Amigdalino Central/metabolismo , Hormona Liberadora de Corticotropina/metabolismo , Ácido Glutámico/metabolismo , Animales , Núcleo Amigdalino Central/efectos de los fármacos , Depresores del Sistema Nervioso Central/farmacología , Hormona Liberadora de Corticotropina/administración & dosificación , Modelos Animales de Enfermedad , Etanol/farmacología , Masculino , Neurotransmisores/farmacología , Ratas Sprague-Dawley , Receptores de Hormona Liberadora de Corticotropina/antagonistas & inhibidores , Receptores de Hormona Liberadora de Corticotropina/metabolismo , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología , Técnicas de Cultivo de Tejidos
19.
J Neurosci ; 37(17): 4593-4603, 2017 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-28363981

RESUMEN

L-type voltage-gated calcium channels (LTCCs) are implicated in several psychiatric disorders that are comorbid with alcoholism and involve amygdala dysfunction. Within the amygdala, the central nucleus (CeA) is critical in acute alcohol's reinforcing actions, and its dysregulation in human alcoholics drives their negative emotional state and motivation to drink. Here we investigated the specific role of CeA LTCCs in the effects of acute alcohol at the molecular, cellular physiology, and behavioral levels, and their potential neuroadaptation in alcohol-dependent rats. Alcohol increases CeA activity (neuronal firing rates and GABA release) in naive rats by engaging LTCCs, and intra-CeA LTCC blockade reduces alcohol intake in nondependent rats. Alcohol dependence reduces CeA LTCC membrane abundance and disrupts this LTCC-based mechanism; instead, corticotropin-releasing factor type 1 receptors (CRF1s) mediate alcohol's effects on CeA activity and drive the escalated alcohol intake of alcohol-dependent rats. Collectively, our data indicate that alcohol dependence functionally alters the molecular mechanisms underlying the CeA's response to alcohol (from LTCC- to CRF1-driven). This mechanistic switch contributes to and reflects the prominent role of the CeA in the negative emotional state that drives excessive drinking.SIGNIFICANCE STATEMENT The central amygdala (CeA) plays a critical role in the development of alcohol dependence. As a result, much preclinical alcohol research aims to identify relevant CeA neuroadaptions that promote the transition to dependence. Here we report that acute alcohol increases CeA neuronal activity in naive rats by engaging L-type calcium channels (LTCCs) and that intra-CeA LTCC blockade reduces alcohol intake in nondependent rats. Alcohol dependence disrupts this LTCC-based mechanism; instead, corticotropin-releasing factor type 1 receptors (CRF1s) mediate alcohol's effects on CeA activity and drive the escalated alcohol intake of alcohol-dependent rats. This switch reflects the important role of the CeA in the pathophysiology of alcohol dependence and represents a new potential avenue for therapeutic intervention during the transition period.


Asunto(s)
Alcoholismo/metabolismo , Canales de Calcio Tipo L/metabolismo , Núcleo Amigdalino Central/metabolismo , Consumo de Bebidas Alcohólicas/psicología , Alcoholismo/fisiopatología , Alcoholismo/psicología , Animales , Conducta Animal , Núcleo Amigdalino Central/fisiopatología , Depresores del Sistema Nervioso Central/farmacología , Emociones , Etanol/farmacología , Masculino , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Receptores de Hormona Liberadora de Corticotropina/metabolismo
20.
Neuropharmacology ; 122: 85-99, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28108359

RESUMEN

Alcohol acts on numerous cellular and molecular targets to regulate neuronal communication within the brain. Chronic alcohol exposure and acute withdrawal generate prominent neuroadaptations at synapses, including compensatory effects on the expression, localization and function of synaptic proteins, channels and receptors. The present article reviews the literature describing the synaptic effects of chronic alcohol exposure and their relevance for synaptic transmission in the central nervous system. This review is not meant to be comprehensive, but rather to highlight the effects that have been observed most consistently and that are thought to contribute to the development of alcohol dependence and the negative aspects of withdrawal. Specifically, we will focus on the major excitatory and inhibitory neurotransmitters in the brain, glutamate and GABA, respectively, and how their neuroadaptations after chronic alcohol exposure contributes to alcohol reinforcement, dependence and withdrawal. This article is part of the Special Issue entitled "Alcoholism".


Asunto(s)
Alcoholismo/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Neuronas/efectos de los fármacos , Sinapsis/efectos de los fármacos , Animales , Etanol/administración & dosificación , Ácido Glutámico/metabolismo , Humanos , Neuronas/metabolismo , Sinapsis/metabolismo , Transmisión Sináptica/efectos de los fármacos , Ácido gamma-Aminobutírico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA