Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Pharm Sci ; 2024 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-39481476

RESUMEN

A huge majority of new chemical entities (NCEs) advancing through the drug discovery pipeline often have poor aqueous solubility. This requires formulation scientists to search for solubility enhancement strategies, within the constraints of time and material. To address these challenges, a strategic platform formulation is often required for a rapid compound screening to enable early exploratory PK and toxicology studies. Through this work, we present an option of a material-sparing, high yielding and solubility-enabling amorphous API and HPMCAS-L co-loaded mesoporous silica-based formulation. The usability of this platform formation strategy was assessed for a physico-chemically diverse set of eleven compounds. The formulation approach was successful in stabilizing the model compounds mesoporous silica. Additionally, through the presence of HPMCAS-L, the precipitation risk in supersaturable aqueous environment was significantly reduced. Finally, this manuscript provides fundamental, computational and experimental molecular-properties based formulation guidance tree to a priori gauge the (1) possibility of generating solid-state stable amorphous formulations and (2) sustaining in vitro supersaturation in extreme non-sink dissolution conditions. This unique and conceptual formulation guidance tree is believed to be extremely beneficial to drug discovery formulators to triage NCEs and streamline solubility-enabling formulation efforts.

2.
Pharmaceutics ; 13(8)2021 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-34452087

RESUMEN

Ribavirin is a water-soluble antiviral compound which, owing to its inability to cross the blood-brain barrier, has limited effectiveness in treating viruses affecting the central nervous system. Direct nose-to-brain delivery was investigated for ribavirin in combination with poloxamer 188, an excipient known to enhance the absorption of drug compounds administered intranasally. Composite solid microparticles suitable for intranasal insufflation were prepared by suspending fine crystals of ribavirin in a matrix of poloxamer 188, which were cryogenically milled and characterized to ensure that ribavirin remained stable throughout preparation. In vitro diffusion of ribavirin across a semi-permeable regenerated cellulose membrane showed comparable cumulative drug release after 180 min from both fine solid particles (<20 µm) and 1:1 ribavirin:poloxamer microparticles (d50 = 20 µm); however, the initial release from polymer microparticles was slower, owing to gel formation on the membrane surface. When solid ribavirin was directly deposited on excised olfactory mucosa, either as fine drug particles or 1:1 ribavirin:poloxamer microparticles, permeation was significantly increased from microparticles containing poloxamer 188, suggesting additional interactions between the polymer and olfactory mucosa. These data indicate that for highly water-soluble drugs such as ribavirin or drugs subject to efflux by the nasal mucosa, a formulation of poloxmer-containing microparticles can enhance permeability across the olfactory epithelium and may improve direct nose-to-brain transport.

3.
Int J Pharm ; 524(1-2): 339-350, 2017 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-28380389

RESUMEN

Ribavirin (C8H12N4O5; anti-viral agent) was crystallized as two unique, phase-pure polymorphs (R-I and R-II). Calorimetrically determined isobaric heat capacities and heat of transition data were utilized to determine the solid-state transition temperature (Ttr), confirming enantiotropism, while R-I was determined to be kinetically stable at ambient temperature. Unprocessed samples of the low Tm polymorph, R-II, did not convert into R-I when held isothermally well above Ttr for 7days. In contrast milled R-II completely transformed to R-I after 15min at the same storage conditions, indicating that defects sustained during processing reduced the energy barrier for transformation, allowing it to occur. R-II was subjected to both cryogenic milling and impact milling at ambient temperature for various durations. Cryomilling resulted in an in situ progressive reduction of crystallinity, with complete conversion to amorphous ribavirin after 2h. Limited molecular mobility attributable to the low milling temperature (Texp=-196°C) likely inhibited recrystallization, allowing the amorphous solid to persist. In contrast, continuous impact milling at ambient temperature resulted in complete in situ conversion from R-II to R-I after 3h. The data suggested rapid conversion to R-I from highly disordered regions during extended milling, facilitated by localized heat buildup that likely exceeded Tg and/or Ttr.


Asunto(s)
Química Farmacéutica , Ribavirina/química , Cristalización , Calor , Difracción de Rayos X
4.
AAPS PharmSciTech ; 18(3): 904-912, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27380436

RESUMEN

Epithelial flux and permeability across bovine olfactory tissue were compared when levodopa (L-DOPA) was loaded in different physical states. Aqueous solution of L-DOPA was prepared in Krebs-Ringer buffer (KRB), at a concentration (0.75 mg/mL) verified to be less than the saturation solubility at both 25 and 37°C. Sodium metabisulfite was added to solution to minimize L-DOPA oxidation; chemical stability of aqueous L-DOPA was evaluated using HPLC-UV. Solid-state characterization of unprocessed, dry, crystalline L-DOPA powder was performed using TGA, DSC, PXRD, and optical microscopy to ensure that preparation of L-DOPA microparticles used for diffusion experiments did not elicit a phase change. Measurements of in vitro flux were made for all preparations, using freshly excised bovine olfactory mucosal membrane. Samples obtained from transport studies were analyzed by HPLC-UV. Tissue viability was measured before and after experiments using transdermal epithelial electrical resistance (TEER). The average steady-state flux (J ss ) of L-DOPA from solid microparticles directly deposited on nasal epithelial tissue was 6.08 ± 0.69 µg/cm2/min, approximately three times greater than the J ss measured for L-DOPA from solution (2.13 ± 0.97 µg/cm2/min). The average apparent permeability coefficient (P app ) of L-DOPA was calculated to be 4.73 × 10-5 cm/s. These findings suggest that nasal delivery of L-DOPA by administration of solid microparticles not only benefits from improved chemical and microbiological stability by avoiding the use of aqueous formulation vehicle but also does not compromise cumulative mass transport across the olfactory membrane.


Asunto(s)
Levodopa/química , Levodopa/metabolismo , Mucosa Olfatoria/metabolismo , Animales , Tampones (Química) , Bovinos , Química Farmacéutica/métodos , Dihidroxifenilalanina/química , Epitelio/metabolismo , Permeabilidad , Soluciones Farmacéuticas/química , Soluciones Farmacéuticas/metabolismo , Polvos/química , Solubilidad , Sulfitos/química
5.
J Pharm Sci ; 103(9): 2911-2923, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24824482

RESUMEN

Fifteen model drugs were quenched from 3:1 (w/w) mixtures with polyethylene glycol 4000 (PEG4000). The resulting solids were characterized using powder X-ray diffraction (PXRD), analysis of pair distribution function-transformed PXRD data (where appropriate), hot-stage polarized light microscopy, and differential scanning calorimetry (DSC). Drug/polymer dispersion behavior was classified using the data from each technique, independent of the others, and limitations to single-method characterization of PEG-based systems are highlighted. The data from all characterization techniques were collectively used to classify dispersion behavior, which was compared with single-technique characterization. Of the 15 combinations, only six resulted in solids whose dispersion behavior was consistently described using each standalone technique. The other nine were misclassified using at least one standalone technique, mainly because the phase behavior was ambiguously interpreted when only the data from one technique were considered. The data indicated that a suite of complementary techniques provided better classifications of the phase behavior. Of all the quenched solids, only cimetidine was fully dispersed in PEG4000, suggesting that it solidified from a completely miscible mixture of molten drug and polymer that did not phase separate upon cooling. In contrast, ibuprofen and PEG4000 completely recrystallized during preparation, whereas the remaining 13 drugs were partially dispersed in PEG4000 at this composition.


Asunto(s)
Preparaciones Farmacéuticas/química , Polietilenglicoles/química , Polímeros/química , Ibuprofeno/química , Polvos/química , Tecnología Farmacéutica/métodos , Difracción de Rayos X/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...