Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
BMC Microbiol ; 24(1): 228, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38943070

RESUMEN

BACKGROUND: Mangroves are complex and dynamic coastal ecosystems under frequent fluctuations in physicochemical conditions related to the tidal regime. The frequent variation in organic matter concentration, nutrients, and oxygen availability, among other factors, drives the microbial community composition, favoring syntrophic populations harboring a rich and diverse, stress-driven metabolism. Mangroves are known for their carbon sequestration capability, and their complex and integrated metabolic activity is essential to global biogeochemical cycling. Here, we present a metabolic reconstruction based on the genomic functional capability and flux profile between sympatric MAGs co-assembled from a tropical restored mangrove. RESULTS: Eleven MAGs were assigned to six Bacteria phyla, all distantly related to the available reference genomes. The metabolic reconstruction showed several potential coupling points and shortcuts between complementary routes and predicted syntrophic interactions. Two metabolic scenarios were drawn: a heterotrophic scenario with plenty of carbon sources and an autotrophic scenario with limited carbon sources or under inhibitory conditions. The sulfur cycle was dominant over methane and the major pathways identified were acetate oxidation coupled to sulfate reduction, heterotrophic acetogenesis coupled to carbohydrate catabolism, ethanol production and carbon fixation. Interestingly, several gene sets and metabolic routes similar to those described for wastewater and organic effluent treatment processes were identified. CONCLUSION: The mangrove microbial community metabolic reconstruction reflected the flexibility required to survive in fluctuating environments as the microhabitats created by the tidal regime in mangrove sediments. The metabolic components related to wastewater and organic effluent treatment processes identified strongly suggest that mangrove microbial communities could represent a resourceful microbial model for biotechnological applications that occur naturally in the environment.


Asunto(s)
Bacterias , Microbiota , Humedales , Microbiota/genética , Bacterias/genética , Bacterias/clasificación , Bacterias/metabolismo , Bacterias/aislamiento & purificación , Filogenia , Procesos Heterotróficos , Ciclo del Carbono , Carbono/metabolismo , Metano/metabolismo , Procesos Autotróficos , Redes y Vías Metabólicas/genética
2.
Ecol Evol ; 14(4): e11250, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38660467

RESUMEN

The "Amazon tipping point" is a global change scenario resulting in replacement of upland terra-firme forests by large-scale "savannization" of mostly southern and eastern Amazon. Reduced rainfall accompanying the Last Glacial Maximum (LGM) has been proposed to have acted as such a tipping point in the past, with the prediction that terra-firme inhabiting species should have experienced reductions in population size as drier habitats expanded. Here, we use whole-genomes of an Amazonian endemic organism (Scale-backed antbirds - Willisornis spp.) sampled from nine populations across the region to test this historical demography scenario. Populations from southeastern Amazonia and close to the Amazon-Cerrado ecotone exhibited a wide range of demographic patterns, while most of those from northern and western Amazonia experienced uniform expansions between 400 kya and 80-60 kya, with gradual declines toward 20 kya. Southeastern populations of Willisornis were the last to diversify and showed smaller heterozygosity and higher runs of homozygosity values than western and northern populations. These patterns support historical population declines throughout the Amazon that affected more strongly lineages in the southern and eastern areas, where historical "tipping point" conditions existed due to the widespread replacement of humid forest by drier and open vegetation during the LGM.

3.
Int Microbiol ; 27(5): 1485-1500, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38388811

RESUMEN

Mangroves are complex land-sea transition ecosystems whose microbiota are essential for their nutrient recycling and conservation. Brazil is the third-largest estuarine area in the world and "Baía de Todos os Santos" (BTS) is one of the largest bays of the country, with wide anthropogenic exploration. Using a metagenomic approach, we investigated composition and functional adaptability as signatures of the microbiome of pristine and anthropized areas of BTS, including those under petroleum refinery influence. The taxonomic analysis showed dominance of sulfate-reducing Desulfobacteraceae, Rhodobacteraceae, and Flavobacteriaceae. Taxa were significantly diverse between pristine and disturbed areas. Disturbed mangroves showed a notary increase in abundance of halophilic, sulfur-related, and hydrocarbon-degrading genera and a decrease in diatoms compared to pristine area. The metabolic profile of BTS mangroves was correlated with the differentially abundant microbiota. Two ecological scenarios were observed: one marked by functions of central metabolism associated with biomass degradation and another by mechanisms of microbial adaptability to pollution conditions and environmental degradation. Part of the microbiome was distinct and not abundant in Brazilian estuarine soils. The microbiome signature observed in each BTS mangrove reflects how human actions impact the diversity of these ecosystems and also emphasize their role in attempting to restore disturbed mangroves. The microbiome may act as a potential biological indicator of the preservation status of these soils, despite the limitation of soil property conditions. Additionally, our data pointed to metagenomics as an additional tool for environmental assessment and reinforced the need for protective measures for the mangroves under study.


Asunto(s)
Bacterias , Microbiota , Humedales , Brasil , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , Bacterias/aislamiento & purificación , Metagenómica/métodos , Microbiología del Suelo , Filogenia
4.
Int J Mol Sci ; 24(17)2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37685953

RESUMEN

The innate immune system is the first line of defense against pathogens such as the acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The type I-interferon (IFN) response activation during the initial steps of infection is essential to prevent viral replication and tissue damage. SARS-CoV and SARS-CoV-2 can inhibit this activation, and individuals with a dysregulated IFN-I response are more likely to develop severe disease. Several mutations in different variants of SARS-CoV-2 have shown the potential to interfere with the immune system. Here, we evaluated the buffy coat transcriptome of individuals infected with Gamma or Delta variants of SARS-CoV-2. The Delta transcriptome presents more genes enriched in the innate immune response and Gamma in the adaptive immune response. Interactome and enriched promoter analysis showed that Delta could activate the INF-I response more effectively than Gamma. Two mutations in the N protein and one in the nsp6 protein found exclusively in Gamma have already been described as inhibitors of the interferon response pathway. This indicates that the Gamma variant evolved to evade the IFN-I response. Accordingly, in this work, we showed one of the mechanisms that variants of SARS-CoV-2 can use to avoid or interfere with the host Immune system.


Asunto(s)
COVID-19 , Interferón Tipo I , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo , Humanos , Interferón Tipo I/genética , SARS-CoV-2 , Transcriptoma , COVID-19/genética
5.
Viruses ; 15(4)2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-37112869

RESUMEN

Brazil currently ranks second in absolute deaths by COVID-19, even though most of its population has completed the vaccination protocol. With the introduction of Omicron in late 2021, the number of COVID-19 cases soared once again in the country. We investigated in this work how lineages BA.1 and BA.2 entered and spread in the country by sequencing 2173 new SARS-CoV-2 genomes collected between October 2021 and April 2022 and analyzing them in addition to more than 18,000 publicly available sequences with phylodynamic methods. We registered that Omicron was present in Brazil as early as 16 November 2021 and by January 2022 was already more than 99% of samples. More importantly, we detected that Omicron has been mostly imported through the state of São Paulo, which in turn dispersed the lineages to other states and regions of Brazil. This knowledge can be used to implement more efficient non-pharmaceutical interventions against the introduction of new SARS-CoV variants focused on surveillance of airports and ground transportation.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Brasil/epidemiología , Transportes , Vacunación
6.
PLoS Negl Trop Dis ; 17(1): e0011037, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36608155

RESUMEN

BACKGROUND: Chikungunya-fever (CHIKF) remains a public health major issue. It is clinically divided into three phases: acute, post-acute and chronic. Chronic cases correspond to 25-40% individuals and, though most of them are characterized by long-lasting arthralgia alone, many of them exhibit persistent or recurrent inflammatory signs that define post-Chikungunya chronic inflammatory joint disease (pCHIKV-CIJD). We aimed to identify early clinical markers of evolution to pCHIKV-CIJD during acute and post-acute phases. METHODOLOGY/PRINCIPAL FINDINGS: We studied a prospective cohort of CHIKF-confirmed volunteers with longitudinal clinical data collection from symptoms onset up to 90 days, including a 21-day visit (D21). Of 169 patients with CHIKF, 86 (50.9%) completed the follow-up, from whom 39 met clinical criteria for pCHIKV-CIJD (45.3%). The relative risk of chronification was higher in women compared to men (RR = 1.52; 95% CI = 1.15-1.99; FDR = 0.03). None of the symptoms or signs presented at D0 behaved as an early predictor of pCHIKV-CIJD, while being symptomatic at D21 was a risk factor for chronification (RR = 1.31; 95% CI = 1.09-1.55; FDR = 0.03). Significance was also observed for joint pain (RR = 1.35; 95% CI = 1.12-1.61; FDR = 0.02), reported edema (RR = 3.61; 95% CI = 1.44-9.06; FDR = 0.03), reported hand and/or feet small joints edema (RR = 4.22; 95% CI = 1.51-11.78; FDR = 0.02), and peri-articular edema observed during physical examination (RR = 2.89; 95% CI = 1.58-5.28; FDR = 0.002). Furthermore, patients with no findings in physical examination at D21 were at lower risk of chronic evolution (RR = 0.41, 95% CI = 0.24-0.70, FDR = 0.01). Twenty-nine pCHIKV-CIJD patients had abnormal articular ultrasonography (90.6% of the examined). The most common findings were synovitis (65.5%) and joint effusion (58.6%). CONCLUSION: This cohort has provided important insights into the prognostic evaluation of CHIKF. Symptomatic sub-acute disease is a relevant predictor of evolution to chronic arthritis with synovitis, drawing attention to joint pain, edema, multiple articular involvement including small hand and feet joints as risk factors for chronification beyond three months, especially in women. Future studies are needed to accomplish the identification of accurate and early biomarkers of poor clinical prognosis, which would allow better understanding of the disease's evolution and improve patients' management, modifying CHIKF burden on global public health.


Asunto(s)
Artritis , Fiebre Chikungunya , Sinovitis , Masculino , Humanos , Femenino , Fiebre Chikungunya/complicaciones , Fiebre Chikungunya/diagnóstico , Fiebre Chikungunya/epidemiología , Estudios Prospectivos , Brasil/epidemiología , Artralgia/epidemiología , Artralgia/etiología , Biomarcadores , Enfermedad Crónica
7.
Nat Commun ; 13(1): 7003, 2022 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-36385137

RESUMEN

Genomic sequencing is essential to track the evolution and spread of SARS-CoV-2, optimize molecular tests, treatments, vaccines, and guide public health responses. To investigate the global SARS-CoV-2 genomic surveillance, we used sequences shared via GISAID to estimate the impact of sequencing intensity and turnaround times on variant detection in 189 countries. In the first two years of the pandemic, 78% of high-income countries sequenced >0.5% of their COVID-19 cases, while 42% of low- and middle-income countries reached that mark. Around 25% of the genomes from high income countries were submitted within 21 days, a pattern observed in 5% of the genomes from low- and middle-income countries. We found that sequencing around 0.5% of the cases, with a turnaround time <21 days, could provide a benchmark for SARS-CoV-2 genomic surveillance. Socioeconomic inequalities undermine the global pandemic preparedness, and efforts must be made to support low- and middle-income countries improve their local sequencing capacity.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Genoma Viral/genética , COVID-19/epidemiología , Pandemias , Genómica
8.
Microb Genom ; 8(9)2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36106981

RESUMEN

During the first semester of 2021, all of Brazil has suffered an intense wave of COVID-19 associated with the Gamma variant. In July, the first cases of Delta variant were detected in the state of Rio de Janeiro. In this work, we have employed phylodynamic methods to analyse more than 1 600 genomic sequences of Delta variant collected until September in Rio de Janeiro to reconstruct how this variant has surpassed Gamma and dispersed throughout the state. After the introduction of Delta, it has initially spread mostly in the homonymous city of Rio de Janeiro, the most populous of the state. In a second stage, dispersal occurred to mid- and long-range cities, which acted as new close-range hubs for spread. We observed that the substitution of Gamma by Delta was possibly caused by its higher viral load, a proxy for transmissibility. This variant turnover prompted a new surge in cases, but with lower lethality than was observed during the peak caused by Gamma. We reason that high vaccination rates in the state of Rio de Janeiro were possibly what prevented a higher number of deaths.


Asunto(s)
COVID-19 , SARS-CoV-2 , Brasil/epidemiología , COVID-19/epidemiología , Humanos , SARS-CoV-2/genética
9.
Viruses ; 14(8)2022 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-36016262

RESUMEN

In the present study, we provide a retrospective genomic surveillance of the SARS-CoV-2 pandemic in Lebanon; we newly sequence the viral genomes of 200 nasopharyngeal samples collected between July 2020 and February 2021 from patients in different regions of Lebanon and from travelers crossing the Lebanese-Syrian border, and we also analyze the Lebanese genomic dataset available at GISAID. Our results show that SARS-CoV-2 infections in Lebanon during this period were shaped by the turnovers of four dominant SARS-CoV-2 lineages, with B.1.398 being the first to thoroughly dominate. Lebanon acted as a dispersal center of B.1.398 to other countries, with intercontinental transmissions being more common than within-continent. Within the country, the district of Tripoli, which was the source of 43% of the total B.1.398 sequences in our study, was identified as being an important source of dispersal in the country. In conclusion, our findings exemplify the butterfly effect, by which a lineage that emerges in a small area can be spread around the world, and highlight the potential role of developing countries in the emergence of new variants.


Asunto(s)
COVID-19 , COVID-19/epidemiología , Humanos , Líbano/epidemiología , Pandemias , Estudios Retrospectivos , SARS-CoV-2/genética
10.
Microb Drug Resist ; 28(8): 849-852, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35833887

RESUMEN

Pseudomonas aeruginosa is an opportunist pathogen usually associated with life threatening infections and exhibits a set of intrinsic and acquired antimicrobial mechanisms. Although resistance to penicillins-like compounds is commonly associated with the chromosomal Pseudomonas-derived cephalosporinases ß-lactamase, the real contribution of OXA-50, a second chromosomally encoded ß-lactamase, remains unclear. In this study, we characterized the biochemical properties of OXA-50, OXA-488, and OXA-494. Both oxacilinases differ from OXA-50 in two amino acids each. The blaOXA-50, blaOXA-488, and blaOXA-494 were cloned into pET26b+ that was transformed into Escherichia coli DH5α strain, expressed in E. coli BL21 strain, and then purified for obtaining the hydrolytic parameters. Benzylpenicillin was the preferential substrate instead of oxacillin. Besides, OXA-488 showed a threefold increase in catalytic efficiency for benzylpenicillin, and it was twofold more efficient in hydrolyzing imipenem, compared with OXA-50, although such carbapenemase activity was considered weak. In addition, OXA-488 and OXA-494 showed an increased affinity for penicillins, which contributed to the increased catalytic efficiency against ampicillin, especially OXA-488. Chromosomally encoded resistance mechanisms are usually overshadowed by acquired mechanisms. However, understanding their real contribution is essential to comprehend the versatile profiles verified in P. aeruginosa isolates. Such information can help to choose the best therapy in a scenario of limited options.


Asunto(s)
Pseudomonas aeruginosa , beta-Lactamas , Antibacterianos/farmacología , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Hidrólisis , Cinética , Pruebas de Sensibilidad Microbiana , Oxacilina , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , beta-Lactamasas/metabolismo , beta-Lactamas/metabolismo , beta-Lactamas/farmacología
11.
Genet Mol Biol ; 45(2): e20210354, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35671453

RESUMEN

Brazil has one of the highest rates of scientific production, occupying the ninth position among countries with genome-sequencing projects. Considering the rapid development of this research area and the diversity of professionals involved, the present study aims to understand the expectations, past experiences and the current scenario of Brazilian research in bioinformatics and genomics. The present research was carried out by analyzing the perceptions of 576 researchers in genomics and bioinformatics in Brazil through content and sentiment analysis techniques. This group of participants is equivalent to 48% of the members of the research community. The results suggest that most researchers have a positive perception of the potential of this research area. However, there is concern about the lack of funding for investing in equipment and professional training. As part of a wish list for the future, researchers highlighted the need for higher funding, formal education, and collaboration among research networks. When asked about genomics and bioinformatics in other countries, the participants recognize that sequencing technologies and infrastructure are more accessible, allowing better data volume expansion.

12.
Front Public Health ; 10: 849978, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35273945

RESUMEN

In this study, we report the first case of intra-host SARS-CoV-2 recombination during a coinfection by the variants of concern (VOC) AY.33 (Delta) and P.1 (Gamma) supported by sequencing reads harboring a mosaic of lineage-defining mutations. By using next-generation sequencing reads intersecting regions that simultaneously overlap lineage-defining mutations from Gamma and Delta, we were able to identify a total of six recombinant regions across the SARS-CoV-2 genome within a sample. Four of them mapped in the spike gene and two in the nucleocapsid gene. We detected mosaic reads harboring a combination of lineage-defining mutations from each VOC. To our knowledge, this is the first report of intra-host RNA-RNA recombination between two lineages of SARS-CoV-2, which can represent a threat to public health management during the COVID-19 pandemic due to the possibility of the emergence of viruses with recombinant phenotypes.


Asunto(s)
COVID-19 , Coinfección , Humanos , Pandemias , Filogenia , SARS-CoV-2/genética
13.
Genomics ; 114(2): 110287, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35131478

RESUMEN

We sequenced 13 Neisseria gonorrhoeae isolates exhibiting distinct susceptibility profiles and which were recovered over 12 years in the metropolitan region of São Paulo, Brazil. Whole Genome Sequencing (WGS) was performed on an Illumina MiSeq™ 2 × 300 bp paired-end reads. Bioinformatics analyses were carried out using CGE, PATRIC, and BLAST databases for manual curation of obtained genomes. Multilocus sequence typing (MLST) analysis identified seven STs, namely ST1580, ST1590, ST1901, ST1902, ST8161, ST9363, and ST15640. Moreover, a diversity of mutations was observed in MtrR/G45D-A39T, PIB/G120K-A121S, and PBP1/L421P. Mutations associated with sulfonamides (DHPS/R228S) and rifampicin (RNAP/H552N) were also detected, as well as tetracycline resistance determinants, namely rpsJ/V57M and tet(M). The results presented herein can contribute to the knowledge of N. gonorrhoeae strains circulating in Sao Paulo, Brazil.


Asunto(s)
Gonorrea , Neisseria gonorrhoeae , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Brasil , Ciprofloxacina/farmacología , Farmacorresistencia Bacteriana/genética , Gonorrea/tratamiento farmacológico , Humanos , Pruebas de Sensibilidad Microbiana , Tipificación de Secuencias Multilocus , Neisseria gonorrhoeae/genética
14.
Gigascience ; 112022 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-35169842

RESUMEN

BACKGROUND: The Public Health Alliance for Genomic Epidemiology (PHA4GE) (https://pha4ge.org) is a global coalition that is actively working to establish consensus standards, document and share best practices, improve the availability of critical bioinformatics tools and resources, and advocate for greater openness, interoperability, accessibility, and reproducibility in public health microbial bioinformatics. In the face of the current pandemic, PHA4GE has identified a need for a fit-for-purpose, open-source SARS-CoV-2 contextual data standard. RESULTS: As such, we have developed a SARS-CoV-2 contextual data specification package based on harmonizable, publicly available community standards. The specification can be implemented via a collection template, as well as an array of protocols and tools to support both the harmonization and submission of sequence data and contextual information to public biorepositories. CONCLUSIONS: Well-structured, rich contextual data add value, promote reuse, and enable aggregation and integration of disparate datasets. Adoption of the proposed standard and practices will better enable interoperability between datasets and systems, improve the consistency and utility of generated data, and ultimately facilitate novel insights and discoveries in SARS-CoV-2 and COVID-19. The package is now supported by the NCBI's BioSample database.


Asunto(s)
COVID-19 , SARS-CoV-2 , Genómica , Humanos , Metadatos , Salud Pública , Reproducibilidad de los Resultados
16.
PeerJ ; 9: e12548, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34909278

RESUMEN

The ongoing coronavirus 2019 (COVID-19) pandemic, triggered by the emerging SARS-CoV-2 virus, represents a global public health challenge. Therefore, the development of effective vaccines is an urgent need to prevent and control virus spread. One of the vaccine production strategies uses the in silico epitope prediction from the virus genome by immunoinformatic approaches, which assist in selecting candidate epitopes for in vitro and clinical trials research. This study introduces the EpiCurator workflow to predict and prioritize epitopes from SARS-CoV-2 genomes by combining a series of computational filtering tools. To validate the workflow effectiveness, SARS-CoV-2 genomes retrieved from the GISAID database were analyzed. We identified 11 epitopes in the receptor-binding domain (RBD) of Spike glycoprotein, an important antigenic determinant, not previously described in the literature or published on the Immune Epitope Database (IEDB). Interestingly, these epitopes have a combination of important properties: recognized in sequences of the current variants of concern, present high antigenicity, conservancy, and broad population coverage. The RBD epitopes were the source for a multi-epitope design to in silico validation of their immunogenic potential. The multi-epitope overall quality was computationally validated, endorsing its efficiency to trigger an effective immune response since it has stability, high antigenicity and strong interactions with Toll-Like Receptors (TLR). Taken together, the findings in the current study demonstrated the efficacy of the workflow for epitopes discovery, providing target candidates for immunogen development.

17.
Virus Evol ; 7(2): veab078, 2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34642605

RESUMEN

Long-term infection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) represents a challenge to virus dispersion and the control of coronavirus disease 2019 (COVID-19) pandemic. The reason why some people have prolonged infection and how the virus persists for so long are still not fully understood. Recent studies suggested that the accumulation of intra-host single nucleotide variants (iSNVs) over the course of the infection might play an important role in persistence as well as emergence of mutations of concern. For this reason, we aimed to investigate the intra-host evolution of SARS-CoV-2 during prolonged infection. Thirty-three patients who remained reverse transcription polymerase chain reaction (RT-PCR) positive in the nasopharynx for on average 18 days from the symptoms onset were included in this study. Whole-genome sequences were obtained for each patient at two different time points. Phylogenetic, populational, and computational analyses of viral sequences were consistent with prolonged infection without evidence of coinfection in our cohort. We observed an elevated within-host genomic diversity at the second time point samples positively correlated with cycle threshold (Ct) values (lower viral load). Direct transmission was also confirmed in a small cluster of healthcare professionals that shared the same workplace by the presence of common iSNVs. A differential accumulation of missense variants between the time points was detected targeting crucial structural and non-structural proteins such as Spike and helicase. Interestingly, longitudinal acquisition of iSNVs in Spike protein coincided in many cases with SARS-CoV-2 reactive and predicted T cell epitopes. We observed a distinguishing pattern of mutations over the course of the infection mainly driven by increasing A→U and decreasing G→A signatures. G→A mutations may be associated with RNA-editing enzyme activities; therefore, the mutational profiles observed in our analysis were suggestive of innate immune mechanisms of the host cell defense. Therefore, we unveiled a dynamic and complex landscape of host and pathogen interaction during prolonged infection of SARS-CoV-2, suggesting that the host's innate immunity shapes the increase of intra-host diversity. Our findings may also shed light on possible mechanisms underlying the emergence and spread of new variants resistant to the host immune response as recently observed in COVID-19 pandemic.

18.
Viruses ; 13(10)2021 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-34696443

RESUMEN

In the present study, we provide a retrospective genomic epidemiology analysis of the SARS-CoV-2 pandemic in the state of Rio de Janeiro, Brazil. We gathered publicly available data from GISAID and sequenced 1927 new genomes sampled periodically from March 2021 to June 2021 from 91 out of the 92 cities of the state. Our results showed that the pandemic was characterized by three different phases driven by a successive replacement of lineages. Interestingly, we noticed that viral supercarriers accounted for the overwhelming majority of the circulating virus (>90%) among symptomatic individuals in the state. Moreover, SARS-CoV-2 genomic surveillance also revealed the emergence and spread of two new variants (P.5 and P.1.2), firstly reported in this study. Our findings provided important lessons learned from the different epidemiological aspects of the SARS-CoV-2 dynamic in Rio de Janeiro. Altogether, this might have a strong potential to shape future decisions aiming to improve public health management and understanding mechanisms underlying virus dispersion.


Asunto(s)
COVID-19/epidemiología , Genoma Viral/genética , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Brasil/epidemiología , COVID-19/mortalidad , Niño , Preescolar , Punto Alto de Contagio de Enfermedades , Monitoreo Epidemiológico , Femenino , Biblioteca de Genes , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Filogenia , Estudios Retrospectivos , Adulto Joven
19.
Front Public Health ; 9: 745310, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34660520

RESUMEN

The emergence of several SARS-CoV-2 lineages presenting adaptive mutations is a matter of concern worldwide due to their potential ability to increase transmission and/or evade the immune response. While performing epidemiological and genomic surveillance of SARS-CoV-2 in samples from Porto Ferreira-São Paulo-Brazil, we identified sequences classified by pangolin as B.1.1.28 harboring Spike L452R mutation, in the RBD region. Phylogenetic analysis revealed that these sequences grouped into a monophyletic branch, with others from Brazil, mainly from the state of São Paulo. The sequences had a set of 15 clade defining amino acid mutations, of which six were in the Spike protein. A new lineage was proposed to Pango and it was accepted and designated P.4. In samples from the city of Porto Ferreira, P.4 lineage has been increasing in frequency since it was first detected in March 2021, corresponding to 34.7% of the samples sequenced in June, the second in prevalence after P.1. Also, it is circulating in 30 cities from the state of São Paulo, and it was also detected in one sample from the state of Sergipe and two from the state of Rio de Janeiro. Further studies are needed to understand whether P.4 should be considered a new threat.


Asunto(s)
COVID-19 , SARS-CoV-2 , Brasil , Humanos , Mutación , Filogenia , Glicoproteína de la Espiga del Coronavirus/genética
20.
PLoS Negl Trop Dis ; 15(10): e0009835, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34644287

RESUMEN

The sharp increase of COVID-19 cases in late 2020 has made Brazil the new epicenter of the ongoing SARS-CoV-2 pandemic. The novel viral lineages P.1 (Variant of Concern Gamma) and P.2, respectively identified in the Brazilian states of Amazonas and Rio de Janeiro, have been associated with potentially higher transmission rates and antibody neutralization escape. In this study, we performed the whole-genome sequencing of 185 samples isolated from three out of the five Brazilian regions, including Amazonas (North region), Rio Grande do Norte, Paraíba and Bahia (Northeast region), and Rio de Janeiro (Southeast region) in order to monitor the spread of SARS-CoV-2 lineages in Brazil in the first months of 2021. Here, we showed a widespread dispersal of P.1 and P.2 across Brazilian regions and, except for Amazonas, P.2 was the predominant lineage identified in the sampled states. We estimated the origin of P.2 lineage to have happened in February, 2020 and identified that it has differentiated into new clades. Interstate transmission of P.2 was detected since March, but reached its peak in December, 2020 and January, 2021. Transmission of P.1 was also high in December and its origin was inferred to have happened in August 2020. We also confirmed the presence of lineage P.7, recently described in the southernmost region of Brazil, to have spread across the Northeastern states. P.1, P.2 and P.7 are descended from the ancient B.1.1.28 strain, which co-dominated the first phase of the pandemic in Brazil with the B.1.1.33 strain. We also identified the occurrence of a new lineage descending from B.1.1.33 that convergently carries the E484K mutation, N.9. Indeed, the recurrent report of many novel SARS-CoV-2 genetic variants in Brazil could be due to the absence of effective control measures resulting in high SARS-CoV2 transmission rates. Altogether, our findings provided a landscape of the critical state of SARS-CoV-2 across Brazil and confirm the need to sustain continuous sequencing of the SARS-CoV-2 isolates worldwide in order to identify novel variants of interest and monitor for vaccine effectiveness.


Asunto(s)
COVID-19/epidemiología , COVID-19/virología , Genoma Viral , Genómica/métodos , SARS-CoV-2 , Brasil/epidemiología , COVID-19/transmisión , Variación Genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Filogenia , SARS-CoV-2/clasificación , SARS-CoV-2/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...