RESUMEN
Purpose: This study aimed to assess the association of anxiety, headache, and insomnia on the QoL of patients with long COVID-19. Methods: We conducted a cross-sectional survey between August 2020 and March 2023. A total of 200 participants were eligible, 53 were excluded and 147 patients with long COVID were included. QoL was evaluated across eight domains using the 36-Item Short Form Health Survey (SF-36). Standardized protocols including the Beck Anxiety Inventory (BAI) (n = 103), Pittsburgh Sleep Quality Index (PSQI) (n = 73), and Migraine Disability Assessment (MIDAS) (n = 67) were also used. Results: Participants with sleep disorders had significantly lower Vitality (p < 0.001). Participants with anxiety disorders had significantly lower Vitality (p = 0.001), poorer Mental Health (p = 0.008), and more severe Bodily Pain (p = 0.008). Participants with headache had significantly lower Vitality (p = 0.032), poorer Mental Health (p = 0.036), and poorer Physical Functioning (p = 0.016). Participants with both headache and anxiety had significantly lower Vitality (p = 0.005) and Mental Health (p = 0.043) domain scores. Correlation analysis revealed that higher scores for anxiety, sleep disorder, and headache were independently correlated with poorer QoL across various domains. The presence of sleep disorder was associated with a fourfold increase in risk of experiencing diminished Vitality (odds ratio [OR]4.47; 95% CI 1.01-19.69; p = 0.048). Conclusion: Participants with anxiety, sleep, and headache disorders tended to have a worse QoL. The Vitality and Mental Health domains were the most adversely affected in patients with long COVID. Sleep disorders were associated with a fourfold increase in the risk of poor Vitality.
RESUMEN
Dengue virus (DENV) is a major global health concern, causing millions of infections annually. Understanding the cellular response to DENV infection is crucial for developing effective therapies. This study provides an in-depth analysis of the cellular response to Dengue virus (DENV) infection, with a specific focus on the interplay between microRNAs (miRNAs), apoptosis, and viral load across different DENV serotypes. Utilizing a variety of cell lines infected with four DENV serotypes, the research methodically quantifies viral load, and the expression levels of miRNA-15, miRNA-16, and BCL2 protein, alongside measuring apoptosis markers. Methodologically, the study employs quantitative PCR for viral load and miRNA expression analysis, and Western blot for apoptosis and BCL2 detection, with a statistical framework that includes ANOVA and correlation analysis to discern significant differences and relationships. The findings reveal that despite similar viral loads across DENV serotypes, DENV-2 exhibits a marginally higher load. A notable upregulation of miRNA-15 and miRNA-16 correlates positively with increased viral load, suggesting their potential role in modulating viral replication. Concurrently, a marked activation of caspases 3 and 7, along with changes in BCL2 protein levels, underscores the role of apoptosis in the cellular response to DENV infection. Conclusively, the study enhances the understanding of miRNA involvement in DENV pathogenesis, highlighting miRNA-15 and miRNA-16 as potential regulatory agents in viral replication and apoptosis. These findings pave the way for further exploration into miRNA-based therapeutic strategies against DENV infection.
Asunto(s)
Apoptosis , Virus del Dengue , Dengue , MicroARNs , Proteínas Proto-Oncogénicas c-bcl-2 , Carga Viral , Replicación Viral , MicroARNs/genética , MicroARNs/metabolismo , Virus del Dengue/fisiología , Virus del Dengue/genética , Humanos , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Dengue/virología , Línea Celular , Caspasa 3/metabolismo , Caspasa 3/genética , Caspasa 7/metabolismo , Caspasa 7/genética , SerogrupoRESUMEN
The threat landscape of biological hazards with the evolution of AI presents challenges. While AI promises innovative solutions, concerns arise about its misuse in the creation of biological weapons. The convergence of AI and genetic editing raises questions about biosecurity, potentially accelerating the development of dangerous pathogens. The mapping conducted highlights the critical intersection between AI and biological threats, underscoring emerging risks in the criminal manipulation of pathogens. Technological advancement in biology requires preventative and regulatory measures. Expert recommendations emphasize the need for solid regulations and responsibility of creators, demanding a proactive, ethical approach and governance to ensure global safety.
RESUMEN
Normally, the host immunological response to viral infection is coordinated to restore homeostasis and protect the individual from possible tissue damage. The two major approaches are adopted by the host to deal with the pathogen: resistance or tolerance. The nature of the responses often differs between species and between individuals of the same species. Resistance includes innate and adaptive immune responses to control virus replication. Disease tolerance relies on the immune response allowing the coexistence of infections in the host with minimal or no clinical signs, while maintaining sufficient viral replication for transmission. Here, we compared the virome of bats, rodents and migratory birds and the molecular mechanisms underlying symptomatic and asymptomatic disease progression. We also explore the influence of the host physiology and environmental influences on RNA virus expression and how it impacts on the whole brain transcriptome of seemingly healthy semipalmated sandpiper (Calidris pusilla) and spotted sandpiper (Actitis macularius). Three time points throughout the year were selected to understand the importance of longitudinal surveys in the characterization of the virome. We finally revisited evidence that upstream and downstream regulation of the inflammatory response is, respectively, associated with resistance and tolerance to viral infections.
Asunto(s)
Quirópteros , Virosis , Animales , Roedores , Aves , Tolerancia InmunológicaRESUMEN
The World Health Organization has estimated the annual occurrence of approximately 392 million dengue virus (DENV) infections in more than 100 countries where the virus is endemic, which represents a serious threat to humanity. DENV is a serologic group with four distinct serotypes (DENV-1, DENV-2, DENV-3, and DENV-4) belonging to the genus Flavivirus, in the family Flaviviridae. Dengue is the most widespread mosquito-borne disease in the world. The ~10.7 kb DENV genome encodes three structural proteins (capsid (C), pre-membrane (prM), and envelope (E)) and seven non-structural (NS) proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5). The NS1 protein is a membrane-associated dimer and a secreted, lipid-associated hexamer. Dimeric NS1 is found on membranes both in cellular compartments and cell surfaces. Secreted NS1 (sNS1) is often present in patient serum at very high levels, which correlates with severe dengue symptoms. This study was conducted to discover how the NS1 protein, microRNAs-15/16 (miRNAs-15/16), and apoptosis are related during DENV-4 infection in human liver cell lines. Huh 7.5 and HepG2 cells were infected with DENV-4, and miRNAs-15/16, viral load, NS1 protein, and caspases-3/7 were quantified after different durations of infection. This study demonstrated that miRNAs-15/16 were overexpressed during the infection of HepG2 and Huh 7.5 cells with DENV-4 and had a relationship with NS1 protein expression, viral load, and the activity of caspases-3/7, thus making these miRNAs potential injury markers during DENV infection in human hepatocytes.
RESUMEN
Arboviruses, such as yellow fever virus (YFV), dengue virus (DENV), and chikungunya virus (CHIKV), present wide global dissemination and a pathogenic profile developed in infected individuals, from non-specific clinical conditions to severe forms, characterised by the promotion of significant lesions in different organs of the harbourer, culminating in multiple organ dysfunction. An analytical cross-sectional study was carried out via the histopathological analysis of 70 samples of liver patients, collected between 2000 and 2017, with confirmed laboratory diagnoses, who died due to infection and complications due to yellow fever (YF), dengue fever (DF), and chikungunya fever (CF), to characterise, quantify, and compare the patterns of histopathological alterations in the liver between the samples. Of the histopathological findings in the human liver samples, there was a significant difference between the control and infection groups, with a predominance of alterations in the midzonal area of the three cases analysed. Hepatic involvement in cases of YF showed a greater intensity of histopathological changes. Among the alterations evaluated, cell swelling, microvesicular steatosis, and apoptosis were classified according to the degree of tissue damage from severe to very severe. Pathological abnormalities associated with YFV, DENV, and CHIKV infections showed a predominance of changes in the midzonal area. We also noted that, among the arboviruses studied, liver involvement in cases of YFV infection was more intense.
RESUMEN
A persistent state of inflammation has been reported during the COVID-19 pandemic. This study aimed to assess short-term heart rate variability (HRV), peripheral body temperature, and serum cytokine levels in patients with long COVID. We evaluated 202 patients with long COVID symptoms categorized them according to the duration of their COVID symptoms (≤120 days, n = 81; >120 days, n = 121), in addition to 95 healthy individuals selected as controls. All HRV variables differed significantly between the control group and patients with long COVID in the ≤120 days group (p < 0.05), and participants in the long COVID ≤120 days group had higher temperatures than those in the long COVID >120 days group in all regions analysed (p < 0.05). Cytokine analysis showed higher levels of interleukin 17 (IL-17) and interleukin 2 (IL-2), and lower levels of interleukin 4 (IL-4) (p < 0.05). Our results suggest a reduction in parasympathetic activation during long COVID and an increase in body temperature due to possible endothelial damage caused by the maintenance of elevated levels of inflammatory mediators. Furthermore, high serum levels of IL-17 and IL-2 and low levels of IL-4 appear to constitute a long-term profile of COVID-19 cytokines, and these markers are potential targets for long COVID-treatment and prevention strategies.
RESUMEN
Introduction: Poor sleep quality have been widely reported in patients with long COVID. Determining the characteristics, type, severity, and relationship of long COVID with other neurological symptoms is essential for the prognosis and management of poor sleep quality. Methods: This cross-sectional study was conducted at a public university in the eastern Amazon region of Brazil between November 2020 and October 2022. The study involved 288 patients with long COVID with self-report neurological symptoms. One hundred thirty-one patients were evaluated by using standardised protocols: Pittsburgh sleep quality index (PSQI), Beck Anxiety Inventory, Chemosensory Clinical Research Center (CCRC), and Montreal Cognitive Assessment (MoCA). This study aimed to describe the sociodemographic and clinical characteristics of patients with long COVID with poor sleep quality and their relationship with other neurological symptoms (anxiety, cognitive impairment, and olfactory disorder). Results: Patients with poor sleep quality were mainly women (76.3%), 44.04 ± 12.73 years old, with >12 years of education (93.1%), and had monthly incomes of up to US $240.00 (54.2%). Anxiety and olfactory disorder were more common in patients with poor sleep quality. Discussion: Multivariate analysis shows that the prevalence of poor sleep quality was higher in patients with anxiety, and olfactory disorder is associated with poor sleep quality. In this cohort of patients with long COVID, the prevalence of poor sleep quality was highest in the group tested by PSQI and were associated with other neurological symptoms, such as anxiety and olfactory dysfunction. A previous study indicates a significant association between poor sleep quality and psychological disorders over time. Recent studies involving neuroimaging found functional and structural changes in Long COVID patients with persistent olfactory disfunction. Poor sleep quality are integral part of complex changes related to Long COVID and should be part of patient's clinical management.
RESUMEN
Long COVID affects many individuals following acute coronavirus disease 2019 (COVID-19), and hematological changes can persist after the acute COVID-19 phase. This study aimed to evaluate these hematological laboratory markers, linking them to clinical findings and long-term outcomes in patients with long COVID. This cross-sectional study selected participants from a 'long COVID' clinical care program in the Amazon region. Clinical data and baseline demographics were obtained, and blood samples were collected to quantify erythrogram-, leukogram-, and plateletgram-related markers. Long COVID was reported for up to 985 days. Patients hospitalized in the acute phase had higher mean red/white blood cell, platelet, and plateletcrit levels and red blood cell distribution width. Furthermore, hematimetric parameters were higher in shorter periods of long COVID than in longer periods. Patients with more than six concomitant long COVID symptoms had a higher white blood cell count, a shorter prothrombin time (PT), and increased PT activity. Our results indicate there may be a compensatory mechanism for erythrogram-related markers within 985 days of long COVID. Increased levels of leukogram-related markers and coagulation activity were observed in the worst long COVID groups, indicating an exacerbated response after the acute disturbance, which is uncertain and requires further investigation.
Asunto(s)
COVID-19 , Humanos , Estudios Transversales , Índices de Eritrocitos , Pruebas Hematológicas , Eritrocitos , Síndrome Post Agudo de COVID-19RESUMEN
Viruses with encephalitogenic potential can cause neurological conditions of clinical and epidemiological importance, such as Saint Louis encephalitis virus, Venezuelan equine encephalitis virus, Eastern equine encephalitis virus, Western equine encephalitis virus, Dengue virus, Zika virus, Chikungunya virus, Mayaro virus and West Nile virus. The objective of the present study was to determine the number of arboviruses with neuroinvasive potential isolated in Brazil that corresponds to the collection of viral samples belonging to the Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute (SAARB/IEC) of the Laboratory Network of National Reference for Arbovirus Diagnosis from 1954 to 2022. In the analyzed period, a total of 1,347 arbovirus samples with encephalitogenic potential were isolated from mice; 5,065 human samples were isolated exclusively by cell culture; and 676 viruses were isolated from mosquitoes. The emergence of new arboviruses may be responsible for diseases still unknown to humans, making the Amazon region a hotspot for infectious diseases due to its fauna and flora species characteristics. The detection of circulating arboviruses with the potential to cause neuroinvasive diseases is constant, which justifies the continuation of active epidemiological surveillance work that offers adequate support to the public health system regarding the virological diagnosis of circulating arboviruses in Brazil.
Asunto(s)
Arbovirus , Virus Chikungunya , Flavivirus , Infección por el Virus Zika , Virus Zika , Animales , Humanos , Ratones , Brasil/epidemiología , Virus de la Encefalitis de San LuisRESUMEN
The risk of the emergence and reemergence of zoonoses is high in regions that are under the strong influence of anthropogenic actions, as they contribute to the risk of vector disease transmission. Yellow fever (YF) is among the main pathogenic arboviral diseases in the world, and the Culicidae Aedes albopictus has been proposed as having the potential to transmit the yellow fever virus (YFV). This mosquito inhabits both urban and wild environments, and under experimental conditions, it has been shown to be susceptible to infection by YFV. In this study, the vector competence of the mosquito Ae. albopictus for the YFV was investigated. Female Ae. albopictus were exposed to non-human primates (NHP) of the genus Callithrix infected with YFV via a needle inoculation. Subsequently, on the 14th and 21st days post-infection, the legs, heads, thorax/abdomen and saliva of the arthropods were collected and analyzed by viral isolation and molecular analysis techniques to verify the infection, dissemination and transmission. The presence of YFV was detected in the saliva samples through viral isolation and in the head, thorax/abdomen and legs both by viral isolation and by molecular detection. The susceptibility of Ae. albopictus to YFV confers a potential risk of reemergence of urban YF in Brazil.
Asunto(s)
Aedes , Fiebre Amarilla , Animales , Femenino , Virus de la Fiebre Amarilla , Brasil/epidemiología , Mosquitos Vectores , CallithrixRESUMEN
The chikungunya virus (CHIKV) is a member of the genus Alphavirus, family Togaviridae. CHIKV causes an acute systemic febrile condition, accompanied by severe polyarthralgia, intense muscle pain, and maculopapular exanthema, which may still occur in many patients. In rare cases, unusual symptoms may occur, eventually worsening the condition and resulting in a fatal outcome. It is a single-stranded, non-segmented RNA virus with a genome of approximately 11,805 nucleotides that organises a genetic and molecular chain that encodes non-structural proteins (nsP1, nsP2, nsP3, nsP4) and structural proteins (E3, E2, 6K, and E1). The fundamental role of immune response in the evolution of the disease is known. Understanding the role of immune response in the pathogenesis of CHIKV infection is challenging. In this context, innate and adaptive immune responses establish a connective interface that induces the production of various mediators that modulate the strategy of inhibiting viral replication. However, the immune escape articulated by the virus indicates that the action of pro-and anti-inflammatory cytokines contributes to the worsening of the disease and potentiates tissue damage with joint involvement. In this review, we discuss the role of the primary pro-and anti-inflammatory cytokines in the immunopathological processes of chikungunya fever.
Asunto(s)
Fiebre Chikungunya , Virus Chikungunya , Humanos , Citocinas , Replicación ViralRESUMEN
During the Zika virus (ZIKV) outbreak and after evidence of its sexual transmission was obtained, concerns arose about the impact of the adverse effects of ZIKV infection on human fertility. In this study, we evaluated the clinical-laboratory aspects and testicular histopathological patterns of pubertal squirrel monkeys (Saimiri collinsi) infected with ZIKV, analyzing the effects at different stages of infection. The susceptibility of S. collinsi to ZIKV infection was confirmed by laboratory tests, which detected viremia (mean 1.63 × 106 RNA copies/µL) and IgM antibody induction. Reduced fecal testosterone levels, severe testicular atrophy and prolonged orchitis were observed throughout the experiment by ultrasound. At 21 dpi, testicular damage associated with ZIKV was confirmed by histopathological and immunohistochemical (IHC) analyses. Tubular retraction, the degeneration and necrosis of somatic and germ cells in the seminiferous tubules, the proliferation of interstitial cells and an inflammatory infiltrate were observed. ZIKV antigen was identified in the same cells where tissue injuries were observed. In conclusion, squirrel monkeys were found to be susceptible to the Asian variant of ZIKV, and this model enabled the identification of multifocal lesions in the seminiferous tubules of the infected group evaluated. These findings may suggest an impact of ZIKV infection on male fertility.
Asunto(s)
Infección por el Virus Zika , Virus Zika , Animales , Masculino , Humanos , Virus Zika/genética , Testículo , SaimiriRESUMEN
A significant proportion of patients experience a wide range of symptoms following acute coronavirus disease 2019 (COVID-19). Laboratory analyses of long COVID have demonstrated imbalances in metabolic parameters, suggesting that it is one of the many outcomes induced by long COVID. Therefore, this study aimed to illustrate the clinical and laboratory markers related to the course of the disease in patients with long COVID. Participants were selected using a clinical care programme for long COVID in the Amazon region. Clinical and sociodemographic data and glycaemic, lipid, and inflammatory screening markers were collected, and cross-sectionally analysed between the long COVID-19 outcome groups. Of the 215 participants, most were female and not elderly, and 78 were hospitalised during the acute COVID-19 phase. The main long COVID symptoms reported were fatigue, dyspnoea, and muscle weakness. Our main findings show that abnormal metabolic profiles (such as high body mass index measurement and high triglyceride, glycated haemoglobin A1c, and ferritin levels) are more prevalent in worse long COVID presentations (such as previous hospitalisation and more long-term symptoms). This prevalence may suggest a propensity for patients with long COVID to present abnormalities in the markers involved in cardiometabolic health.
Asunto(s)
COVID-19 , Humanos , Femenino , Masculino , Síndrome Post Agudo de COVID-19 , SARS-CoV-2 , Estudios Transversales , MetabolomaRESUMEN
Dengue fever, the most common arbovirus disease, affects an estimated 390 million people annually. Dengue virus (DENV) is an RNA virus of the Flaviviridae family with four different serotypes. Dengue haemorrhagic fever is the deadliest form of dengue infection and is characterised by thrombocytopaenia, hypotension, and the possibility of multi-system organ failure. The mechanism hypothesised for DENV viral replication is intrinsic antibody-dependent enhancement, which refers to Fcγ receptor-mediated viral amplification. This hypothesis suggests that the internalisation of DENV through the Fcγ receptor inhibits antiviral genes by suppressing type-1 interferon-mediated antiviral responses. DENV NS1 antibodies can promote the release of various inflammatory mediators in the nuclear transcription factor pathway (NF-κB-dependent), including monocyte chemoattractant protein (MCP)-1, interleukin (IL)-6, and IL-8. As a result, MCP-1 increases ICAM-1 expression and facilitates leukocyte transmigration. In addition, anti-DENV NS1 antibodies induce endothelial cell apoptosis via a nitric oxide-regulated pathway. A chain reaction involving pre-existing DENV heterotypic antibodies and innate immune cells causes dysfunction in complement system activity and contributes to the action of autoantibodies and anti-endothelial cells, resulting in endothelial cell dysfunction, blood-retinal barrier breakdown, haemorrhage, and plasma leakage. A spectrum of ocular diseases associated with DENV infection, ranging from haemorrhagic to inflammatory manifestations, has been reported in the literature. Although rare, ophthalmic manifestations can occur in both the anterior and posterior segments and are usually associated with thrombocytopenia. The most common ocular complication is haemorrhage. However, ophthalmic complications, such as anterior uveitis and vasculitis, suggest an immune-mediated pathogenesis.
Asunto(s)
Virus del Dengue , Dengue , Trombocitopenia , Humanos , Receptores de IgG/uso terapéutico , Hemorragia/complicaciones , Interleucina-6 , Antivirales/uso terapéuticoRESUMEN
Yellow fever (YF) may cause lesions in different organs. There are no studies regarding the in situ immune response in the human lung and investigating immunopathological aspects in fatal cases can help to better understand the evolution of the infection. Lung tissue samples were collected from 10 fatal cases of human yellow fever and three flavivirus-negative controls who died of other causes and whose lung parenchymal architecture was preserved. In YFV-positive fatal cases, the main histopathological changes included the massive presence of diffuse alveolar inflammatory infiltrate, in addition to congestion and severe hemorrhage. The immunohistochemical analysis of tissues in the lung parenchyma showed significantly higher expression of E-selectin, P-selectin, ICAM-1, VCAM-1 in addition to cytokines such as IL-4, IL-10, IL-13, TNF- α, IFN-γ and TGF-ß compared to the negative control. The increase in immunoglobulins ICAM-1 and VCAM-1 results in strengthening of tissue transmigration signaling. E-selectin and P-selectin actively participate in this process of cell migration and formation of the inflammatory infiltrate. IFN-γ and TNF-α participate in the process of cell injury and viral clearance. The cytokines IL-4 and TGF-ß, acting in synergism, participate in the process of tissue regeneration and breakdown. The anti-inflammatory cytokines IL-4, IL-10 and IL-13 also act in the reduction of inflammation and tissue repair. Our study indicates that the activation of the endothelium aggravates the inflammatory response by inducing the expression of adhesion molecules and cytokines that contribute to the rolling, recruitment, migration and eliciting of the inflammatory process in the lung parenchyma, contributing to the fatal outcome of the disease.
Asunto(s)
Molécula 1 de Adhesión Intercelular , Fiebre Amarilla , Humanos , Molécula 1 de Adhesión Celular Vascular/análisis , Molécula 1 de Adhesión Celular Vascular/metabolismo , Interleucina-13 , Interleucina-10 , Interleucina-4 , Citocinas/farmacología , Endotelio/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Pulmón/metabolismo , Factor de Crecimiento Transformador betaRESUMEN
Macrophages in the kidney play a pathogenic role in inflammation and fibrosis. Our study aimed to understand the polarisation of the M1 and M2 phenotypic profiles of macrophages in injured kidney tissue retrieved from fatal cases of yellow fever virus (YFV). A total of 11 renal tissue biopsies obtained from patients who died of yellow fever (YF) were analysed. To detect antibodies that promote the classical and alternative pathways of macrophage activation, immunohistochemical analysis was performed to detect CD163, CD68, inducible nitric oxide synthase (iNOS), arginase 1, interleukin (IL)-4, IL-10, interferon (IFN)-γ, IFN-ß, tumour necrosis factor (TNF)-α, IL-13, and transforming growth factor (TGF)-ß. There was a difference in the marker expression between fatal cases of YFV and control samples, with increased expression in the cortical region of the renal parenchyma. The immunoexpression of CD68 and CD163 receptors suggests the presence of activated macrophages migrating to infectious foci. The rise in IL-10, IL-4, and IL-13 indicated their potential role in the inactivation of the inflammatory macrophage response and phenotypic modulation of M2 macrophages. The altered expression of IFN-γ and IFN-ß demonstrates the importance of the innate immune response in combating microorganisms. Our findings indicate that the polarisation of M1 and M2 macrophages plays a vital role in the renal immune response to YFV.
Asunto(s)
Interleucina-10 , Fiebre Amarilla , Humanos , Interleucina-10/metabolismo , Interleucina-13 , Riñón/metabolismo , MacrófagosRESUMEN
Yellow fever (YF) is an infectious and acute viral haemorrhagic disease that triggers a cascade of host immune responses. We investigated the Th17 cytokine profile in the liver tissue of patients with fatal YF. Liver tissue samples were collected from 26 deceased patients, including 21 YF-positive and 5 flavivirus-negative patients, with preserved hepatic parenchyma architecture, who died of other causes. Histopathological and immunohistochemical analysis were performed on the liver samples to evaluate the Th17 profiles (ROR-γ, STAT3, IL-6, TGF-ß, IL-17A, and IL-23). Substantial differences were found in the expression levels of these markers between the patients with fatal YF and controls. A predominant expression of Th17 cytokine markers was observed in the midzonal region of the YF cases, the most affected area in the liver acinus, compared with the controls. Histopathological changes in the hepatic parenchyma revealed cellular damage characterised mainly by the presence of inflammatory cell infiltrates, Councilman bodies (apoptotic cells), micro/macrovesicular steatosis, and lytic and coagulative necrosis. Hence, Th17 cytokines play a pivotal role in the immunopathogenesis of YF and contribute markedly to triggering cell damage in patients with fatal disease outcomes.
Asunto(s)
Fiebre Amarilla , Citocinas , Humanos , Inmunidad , Hígado/patología , Células Th17/patología , Fiebre Amarilla/patologíaRESUMEN
A panoramic analysis of chemokines, pro-inflammatory/regulatory cytokines, and growth factors was performed in serum samples from patients with acute DENV infection (n=317) by a high-throughput microbeads array. Most soluble mediators analyzed were increased in DENV patients regardless of the DENV serotype. The substantial increase (≥10-fold) of CXCL10, IL-6, and IFN-γ, and decreased levels of PDGF (<0.4-fold) was universally identified in all DENV serotypes. Of note, increased levels of CXCL8, CCL4, and IL-12 (≥3-9-fold) were selectively observed in DENV2 as compared to DENV1 and DENV4. Heatmap and biomarker signatures further illustrated the massive release of soluble mediators observed in DENV patients, confirming the marked increase of several soluble mediators in DENV2. Integrative correlation matrices and networks showed that DENV infection exhibited higher connectivity among soluble mediators. Of note, DENV2 displayed a more complex network, with higher connectivity involving a higher number of soluble mediators. The timeline kinetics (Day 0-1, D2, D3, D4-6) analysis additionally demonstrated differences among DENV serotypes. While DENV1 triggers a progressive increase of soluble mediators towards D3 and with a decline at D4-6, DENV2 and DENV4 develop with a progressive increase towards D4-6 with an early plateau observed in DENV4. Overall, our results provided a comprehensive overview of the immune response elicited by DENV infection, revealing that infection with distinct DENV serotypes causes distinct profiles, rhythms, and dynamic network connectivity of soluble mediators. Altogether, these findings may provide novel insights to understand the pathogenesis of acute infection with distinct DENV serotypes.
Asunto(s)
Virus del Dengue , Dengue , Anticuerpos Antivirales , Humanos , Serogrupo , SueroRESUMEN
Although several clinical manifestations of persistent long coronavirus disease (COVID-19) have been documented, their effects on the cardiovascular and autonomic nervous system over the long term remain unclear. Thus, we examined the presence of alterations in cardiac autonomic functioning in individuals with long-term manifestations. The study was conducted from October 2020 to May 2021, and an autonomic assessment was performed to collect heart rate data for the heart rate variability (HRV) analysis. The study participants were divided into the long COVID clinical group, the intragroup, which included patients who were hospitalized, and those who were not hospitalized and were symptomatic for different periods (≤3, >3, ≤6, and >6 months), with and without dyspnoea. The control group, the intergroup, comprised of COVID-free individuals. Our results demonstrated that the long COVID clinical group showed reduced HRV compared with the COVID-19-uninfected control group. Patients aged 23-59 years developed COVID symptoms within 30 days after infection, whose diagnosis was confirmed by serologic or reverse-transcription polymerase chain reaction (swab) tests, were included in the study. A total of 155 patients with long COVID [95 women (61.29%), mean age 43.88 ± 10.88 years and 60 men (38.71%), mean age 43.93 ± 10.11 years] and 94 controls [61 women (64.89%), mean age 40.83 ± 6.31 and 33 men (35.11%), mean age 40.69 ± 6.35 years] were included. The intragroup and intergroup comparisons revealed a reduction in global HRV, increased sympathetic modulation influence, and a decrease in parasympathetic modulation in long COVID. The intragroup showed normal sympathovagal balance, while the intergroup showed reduced sympathovagal balance. Our findings indicate that long COVID leads to sympathetic excitation influence and parasympathetic reduction. The excitation can increase the heart rate and blood pressure and predispose to cardiovascular complications. Short-term HRV analysis showed good reproducibility to verify the cardiac autonomic involvement.