Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 133(7): 072502, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39213578

RESUMEN

Excited states in ^{10}B were populated with the ^{10}B(p,p^{'}γ)^{10}B^{*} reaction at 8.5 MeV and their γ decay was investigated via coincidence γ-ray spectroscopy. The emitted γ rays were measured using large-volume LaBr_{3}:Ce and CeBr_{3} detectors placed in anti-Compton shields. This allowed the observation of weak γ-ray transitions, such as the M3 transition between the J^{π},T=0^{+},1 isobaric analog state (IAS) and the J^{π},T=3^{+},0 ground state and the E2 transition between the J^{π},T=2_{1}^{+},0 state and the IAS, i.e., performing measurements of branching ratios at the level of λ≥10^{-4}. For the first time in ^{10}B, the competing M1 and M3 transitions from the decay of the IAS have been observed in a γ spectroscopy experiment. The experimental results are compared with ab initio no-core shell model calculation using the newest version of the local position-space chiral N^{3}LO nucleon-nucleon interaction. The calculations reproduce correctly the ordering of the bound states in ^{10}B, and are in reasonable agreement with the observed branching ratios and reduced transition probabilities.

2.
Appl Radiat Isot ; 191: 110559, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36413938

RESUMEN

We have designed and constructed a high-energy γ-ray source for detector characterisation and calibration. The source is a composite type based on a plutonium-beryllium neutron emitter embedded in a paraffin moderator, which is homogeneously mixed with nickel powder. The 9 MeV γ-ray source produces approximately 450 photons per second in 4π when 2.2×105 neutrons per second are emitted, corresponding to a surface flux of 9 MeV γ-rays of approximately 2.5×10-6 cm-2 per emitted neutron. Here we discuss the properties and design of this source, including the characterisation of homogeneity and high-energy γ-ray emission spectra.

3.
Anal Biochem ; 549: 58-65, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29545094

RESUMEN

Screening assays performed against membrane protein targets (e.g. phage display) are hampered by issues arising from protein expression and purification, protein stability in detergent solutions and epitope concealment by detergent micelles. Here, we have studied a fast and simple method to improve screening against membrane proteins: spherical-supported bilayer lipid membranes ("SSBLM"). SSBLMs can be quickly isolated via low-speed centrifugation and redispersed in liquid solutions while presenting the target protein in a native-like lipid environment. To provide proof-of-concept, SSBLMs embedding the polytopic bacterial nucleoside transporter NupC were assembled on 100- and 200 nm silica particles. To test specific binding of antibodies, NupC was tagged with a poly-histidine epitope in one of its central loops between two transmembrane helices. Fluorescent labelling, small angle X-ray scattering (SAXS) and cryo-electron microscopy (cryo-EM) were used to monitor formation of the SSBLMs. Specific binding of an anti-his antibody and a gold-nitrilotriacetic acid (NTA) conjugate probe was confirmed with ELISAs and cryo-EM. SSBLMs for screening could be made with purified and lipid reconstituted NupC, as well as crude bacterial membrane extracts. We conclude that SSBLMs are a promising new means of presenting membrane protein targets for (biomimetic) antibody screening in a native-like lipid environment.


Asunto(s)
Proteínas de Escherichia coli/química , Escherichia coli/química , Membrana Dobles de Lípidos/química , Proteínas de Transporte de Membrana/química , Microscopía por Crioelectrón , Epítopos/química , Escherichia coli/ultraestructura , Estructura Secundaria de Proteína , Dispersión del Ángulo Pequeño , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...