Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 145(29): 15997-16014, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37432784

RESUMEN

The alloyed lead/tin (Pb/Sn) halide perovskites have gained significant attention in the development of tandem solar cells and other optoelectronic devices due to their widely tunable absorption edge. To gain a better understanding of the intriguing properties of Pb/Sn perovskites, such as their anomalous bandgap's dependence on stoichiometry, it is important to deepen the understanding of their chemical behavior and local structure. Herein, we investigate a series of two-dimensional Ruddlesden-Popper (RP) and Dion-Jacobson (DJ) phase alloyed Pb/Sn bromide perovskites using butylammonium (BA) and 3-(aminomethyl)pyridinium (3AMPY) as the spacer cations: (BA)2(MA)n-1PbxSnn-xBr3n+1 (n = 1-3) and (3AMPY)(MA)n-1PbxSnn-xBr3n+1 (n = 1-3) through a solution-based approach. Our results show that the ratio and site preference of Pb/Sn atoms are influenced by the layer thickness (n) and spacer cations (A'), as determined by single-crystal X-ray diffraction. Solid-state 1H, 119Sn, and 207Pb NMR spectroscopy analysis shows that the Pb atoms prefer the outer layers in n = 3 members: (BA)2(MA)PbxSnn-xBr10 and (3AMPY)(MA)PbxSnn-xBr10. Layered 2D DJ alloyed Pb/Sn bromide perovskites (3AMPY)(MA)n-1PbxSnn-xBr3n+1 (n = 1-3) demonstrate much narrower optical band gaps, lower energy PL emission peaks, and longer carrier lifetimes compared to those of RP analogs. Density functional theory calculations suggest that Pb-rich alloys (Pb:Sn ∼4:1) for n = 1 compounds are thermodynamically favored over 50:50 (Pb:Sn ∼1:1) compositions. From grazing-incidence wide-angle X-ray scattering (GIWAXS), we see that films in the RP phase orient parallel to the substrate, whereas for DJ cases, random orientations are observed relative to the substrate.

2.
Adv Sci (Weinh) ; 10(26): e2303133, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37414727

RESUMEN

2D hybrid organic-inorganic perovskites (HOIPs) are commonly found under subcritical cyclic stresses and suffer from fatigue issues during device operation. However, their fatigue properties remain unknown. Here, the fatigue behavior of (C4 H9 -NH3 )2 (CH3 NH3 )2 Pb3 I10 , the archetype 2D HOIP, is systematically investigated by atomic force microscopy (AFM). It is found that 2D HOIPs are much more fatigue resilient than polymers and can survive over 1 billion cycles. 2D HOIPs tend to exhibit brittle failure at high mean stress levels, but behave as ductile materials at low mean stress levels. These results suggest the presence of a plastic deformation mechanism in these ionic 2D HOIPs at low mean stress levels, which may contribute to the long fatigue lifetime, but is inhibited at higher mean stresses. The stiffness and strength of 2D HOIPs are gradually weakened under subcritical loading, potentially as a result of stress-induced defect nucleation and accumulation. The cyclic loading component can further accelerate this process. The fatigue lifetime of 2D HOIPs can be extended by reducing the mean stress, stress amplitude, or increasing the thickness. These results can provide indispensable insights into designing and engineering 2D HOIPs and other hybrid organic-inorganic materials for long-term mechanical durability.

3.
Chem Rev ; 123(12): 7890-7952, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37311205

RESUMEN

Solution-processed semiconductors are in demand for present and next-generation optoelectronic technologies ranging from displays to quantum light sources because of their scalability and ease of integration into devices with diverse form factors. One of the central requirements for semiconductors used in these applications is a narrow photoluminescence (PL) line width. Narrow emission line widths are needed to ensure both color and single-photon purity, raising the question of what design rules are needed to obtain narrow emission from semiconductors made in solution. In this review, we first examine the requirements for colloidal emitters for a variety of applications including light-emitting diodes, photodetectors, lasers, and quantum information science. Next, we will delve into the sources of spectral broadening, including "homogeneous" broadening from dynamical broadening mechanisms in single-particle spectra, heterogeneous broadening from static structural differences in ensemble spectra, and spectral diffusion. Then, we compare the current state of the art in terms of emission line width for a variety of colloidal materials including II-VI quantum dots (QDs) and nanoplatelets, III-V QDs, alloyed QDs, metal-halide perovskites including nanocrystals and 2D structures, doped nanocrystals, and, finally, as a point of comparison, organic molecules. We end with some conclusions and connections, including an outline of promising paths forward.

4.
ACS Appl Mater Interfaces ; 15(6): 7919-7927, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36740778

RESUMEN

The implementation of two-dimensional (2D) hybrid organic-inorganic perovskites (HOIPs) in semiconductor device applications will have to accommodate the co-existence of strain and temperature stressors and requires a thorough understanding of the thermomechanical behavior of 2D HOIPs. This will mitigate thermomechanical stability issues and improve the durability of the devices, especially when one considers the high susceptibility of 2D HOIPs to temperature due to their soft nature. Here, we employ atomic force microscopy (AFM) stretching of suspended membranes to measure the temperature dependence of the in-plane Young's modulus (E∥) of model Ruddlesden-Popper 2D HOIPs with a general formula of (CH3(CH2)3NH3)2(CH3NH3)n-1PbnI3n+1 (here, n = 1, 3, or 5). We find that E∥ values of these 2D HOIPs exhibit a prominent non-monotonic dependence on temperature, particularly an abnormal thermal stiffening behavior (nearly 40% change in E∥) starting around the order-disorder transition temperature of the butylammonium spacer molecules, which is significantly different from the thermomechanical behavior expected from their 3D counterpart (CH3NH3PbI3) or other low-dimensional material systems. Further raising the temperature eventually reverses the trend to thermal softening. The magnitude of the thermally induced change in E∥ is also much higher in 2D HOIPs than in their 3D analogs. Our results can shed light on the structural origin of the thermomechanical behavior and provide needed guidance to design 2D HOIPs with desired thermomechanical properties to meet the application needs.

5.
J Am Chem Soc ; 144(18): 8223-8230, 2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35482958

RESUMEN

A recently discovered new family of 3D halide perovskites with the general formula (A)1-x(en)x(Pb)1-0.7x(X)3-0.4x (A = MA, FA; X = Br, I; MA = methylammonium, FA = formamidinium, en = ethylenediammonium) is referred to as "hollow" perovskites owing to extensive Pb and X vacancies created on incorporation of en cations in the 3D network. The "hollow" motif allows fine tuning of optical, electronic, and transport properties and bestowing good environmental stability proportional to en loading. To shed light on the origin of the apparent stability of these materials, we performed detailed thermochemical studies, using room temperature solution calorimetry combined with density functional theory simulations on three different families of "hollow" perovskites namely en/FAPbI3, en/MAPbI3, and en/FAPbBr3. We found that the bromide perovskites are more energetically stable compared to iodide perovskites in the FA-based hollow compounds, as shown by the measured enthalpies of formation and the calculated formation energies. The least stable FAPbI3 gains stability on incorporation of the en cation, whereas FAPbBr3 becomes less stable with en loading. This behavior is attributed to the difference in the 3D cage size in the bromide and iodide perovskites. Configurational entropy, which arises from randomly distributed cation and anion vacancies, plays a significant role in stabilizing these "hollow" perovskite structures despite small differences in their formation enthalpies. With the increased vacancy defect population, we have also examined halide ion migration in the FA-based "hollow" perovskites and found that the migration energy barriers become smaller with the increasing en content.

6.
J Am Chem Soc ; 144(14): 6390-6409, 2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35378979

RESUMEN

The nature of the organic cation in two-dimensional (2D) hybrid lead iodide perovskites tailors the structural and technological features of the resultant material. Herein, we present three new homologous series of (100) lead iodide perovskites with the organic cations allylammonium (AA) containing an unsaturated C═C group and iodopropylammonium (IdPA) containing iodine on the organic chain: (AA)2MAn-1PbnI3n+1 (n = 3-4), [(AA)x(IdPA)1-x]2MAn-1PbnI3n+1 (n = 1-4), and (IdPA)2MAn-1PbnI3n+1 (n = 1-4), as well as their perovskite-related substructures. We report the in situ transformation of AA organic layers into IdPA and the incorporation of these cations simultaneously into the 2D perovskite structure. Single-crystal X-ray diffraction shows that (AA)2MA2Pb3I10 crystallizes in the space group P21/c with a unique inorganic layer offset (0, <1/2), comprising the first example of n = 3 halide perovskite with a monoammonium cation that deviates from the Ruddlesden-Popper (RP) halide structure type. (IdPA)2MA2Pb3I10 and the alloyed [(AA)x(IdPA)1-x]2MA2Pb3I10 crystallize in the RP structure, both in space group P21/c. The adjacent I···I interlayer distance in (AA)2MA2Pb3I10 is ∼5.6 Å, drawing the [Pb3I10]4- layers closer together among all reported n = 3 RP lead iodides. (AA)2MA2Pb3I10 presents band-edge absorption and photoluminescence (PL) emission at around 2.0 eV that is slightly red-shifted in comparison to (IdPA)2MA2Pb3I10. The band structure calculations suggest that both (AA)2MA2Pb3I10 and (IdPA)2MA2Pb3I10 have in-plane effective masses around 0.04m0 and 0.08m0, respectively. IdPA cations have a greater dielectric contribution than AA. The excited-state dynamics investigated by transient absorption (TA) spectroscopy reveal a long-lived (∼100 ps) trap state ensemble with broad-band emission; our evidence suggests that these states appear due to lattice distortions induced by the incorporation of IdPA cations.

7.
ACS Appl Mater Interfaces ; 13(27): 31642-31649, 2021 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-34189905

RESUMEN

In-plane strains are commonly found in two-dimensional (2D) metal halide organic-inorganic perovskites (HOIPs). The in-plane mechanical properties of 2D HOIPs are vital for mitigating the strain-induced stability issues of 2D HOIPs, yet their structure and mechanical property relationship largely remains unknown. Here, we employed atomic force microscope indentation to systematically investigate the in-plane Young's moduli E∥ of 2D lead halide Ruddlesden-Popper HOIPs with a general formula of (R-NH3)2PbX4, where the spacer molecules R-NH3+ are linear alkylammonium cations (CmH2m+1-NH3+, m = 4, 6, 8, or 12) and X = I, Br, or Cl. Fixing the spacer molecule to butylammonium, we discovered that the E∥ of 2D HOIPs generally follows the trend of Pb-X bond strength, different from the tendency found in the out-of-plane moduli E⊥, showing more prominent effects of the metal halide inorganic framework on E∥ than E⊥. E∥ exhibits nonmonotonic dependence on the chain length of the linear alkyl spacer molecules, which would first decrease and plateau but then increase again. This is likely due to the competition of the bond strength and structural distortion in the inorganic layer, the relative fraction of the soft organic spacers, and the interfacial mechanical coupling associated with the interdigitation of the alkyl chains. The mechanical anisotropy of 2D HOIPs, marked by E∥/E⊥, shows wide tunability based on structural composition, particularly for iodide-based 2D HOIPs. Our results provide valuable insights into the structure-property relationships regarding the mechanical anisotropy and in-plane mechanical behaviors of 2D HOIPs, which can guide the materials design and device optimization to achieve required mechanical performance in 2D HOIP-based applications.

8.
J Am Chem Soc ; 143(11): 4244-4252, 2021 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-33688726

RESUMEN

Two-dimensional (2D) semiconductors are attractive candidates for a variety of optoelectronic applications owing to the unique electronic properties that arise from quantum confinement along a single dimension. Incorporating nonradiative mechanisms that enable directed migration of bound charge carriers, such as Förster resonance energy transfer (FRET), could boost device efficiencies provided that FRET rates outpace undesired relaxation pathways. However, predictive models for FRET between distinct 2D states are lacking, particularly with respect to the distance d between a donor and acceptor. We approach FRET in systems with binary mixtures of donor and acceptor 2D perovskite quantum wells (PQWs), and we synthetically tune distances between donor and acceptor by varying alkylammonium spacer cation lengths. FRET rates are monitored using transient absorption spectroscopy and ultrafast photoluminescence, revealing rapid picosecond lifetimes that scale with spacer cation length. We theoretically model these binary mixtures of PQWs, describing the emitters as classical oscillating dipoles. We find agreement with our empirical lifetimes and then determine the effects of lateral extent and layer thickness, establishing fundamental principles for FRET in 2D materials.

9.
J Am Chem Soc ; 143(6): 2523-2536, 2021 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-33534580

RESUMEN

Two-dimensional (2D) hybrid organic-inorganic halide perovskites are a preeminent class of low-cost semiconductors whose inherent structural tunability and attractive photophysical properties have led to the successful fabrication of solar cells with high power conversion efficiencies. Despite the observed superior stability of 2D lead iodide perovskites over their 3D parent structures, an understanding of their thermochemical profile is missing. Herein, the calorimetric studies reveal that the Ruddlesden-Popper (RP) series, incorporating the monovalent-monoammonium spacer cations of pentylammonium (PA) and hexylammonium (HA): (PA)2(MA)n-1PbnI3n+1 (n = 2-6) and (HA)2(MA)n-1PbnI3n+1 (n = 2-4) have a negative enthalpy of formation, relative to their binary iodides. In contrast, the enthalpy of formation for the Dion-Jacobson (DJ) series, incorporating the divalent and cyclic diammonium cations of 3- and 4-(aminomethyl)piperidinium (3AMP and 4AMP respectively): (3AMP)(MA)n-1PbnI3n+1 (n = 2-5) and (4AMP)(MA)n-1PbnI3n+1 (n = 2-4) have a positive enthalpy of formation. In addition, for the (PA)2(MA)n-1PbnI3n+1 family of materials, we report the phase-pure synthesis and single crystal structure of the next member of the series (PA)2(MA)5Pb6I19 (n = 6), and its optical properties, marking this the second n = 6, bulk member published to date. Particularly, (PA)2(MA)5Pb6I19 (n = 6) has negative enthalpy of formation as well. Additionally, the analysis of the structural parameters and optical properties between the examined RP and DJ series offers guiding principles for the targeted design and synthesis of 2D perovskites for efficient solar cell fabrication. Although the distortions of the Pb-I-Pb equatorial angles are larger in the DJ series, the significantly smaller I···I interlayer distances lead to overall smaller band gap values, in comparison with the RP series. Our film stability studies on the RP and DJ perovskites series reveal consistent observations with the thermochemical findings, pointing out to the lower extrinsic stability of the DJ materials in ambient air.

10.
ACS Appl Mater Interfaces ; 12(18): 20440-20447, 2020 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-32275132

RESUMEN

Mechanical stability of hybrid organic-inorganic perovskites (HOIPs) is essential to achieve long-term durable HOIP-based devices. While HOIPs in two-dimensional (2D) form offer numerous options in the structure and composition to tune their mechanical properties, little is known about the structure-mechanical-property relationship in this family of materials. Here, we investigated a series of 2D lead halide HOIPs by nanoindentation to explore the impact of critical factors controlling the properties of both the organic and inorganic layers on the materials' out-of-plane mechanical performance. We find that the lead-halide bond in the inorganic framework can significantly influence the mechanical properties of 2D Ruddlesden-Popper (RP) HOIPs with n = 1. Like 3D HOIPs, stronger lead-halide bond strength leads to a higher Young's modulus in these 2D HOIPs, i.e., E⊥Cl ≳ E⊥Br > E⊥I. In contrast, the hardness of 2D RP HOIPs follows a trend of HBr2D > HCl2D > HI2D, which is different from that found in 3D HOIPs, probably due to the combined effects from the Pb-X bond strength and inorganic framework structural change (e.g., symmetry and distortion). We further show that the interface between the organic layers in 2D HOIPs can be an effective route to engineer the materials' mechanical properties. Replacing the weak CH3-CH3 van der Waals forces by covalent bonds or phenyl-phenyl interactions in the interface can lead to a much stiffer and harder 2D HOIPs. Finally, we discover that the mechanical performance of 2D HOIPs with linear aliphatic diammonium spacer molecules is affected by the two basic structural parameters, i.e., the thicknesses of the organic and inorganic layers, in a similar way compared to that of 2D RP HOIPs with linear aliphatic monoammonium spacer molecules. A thinner organic layer and a thicker inorganic layer can result in 2D HOIPs with larger elastic modulus and hardness values. Our results offer intriguing insights into the structure-property relationship of 2D HOIPs from a mechanical perspective, providing guidelines and inspirations to achieve material design with required mechanical properties for applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA