Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
JCI Insight ; 9(8)2024 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-38646937

RESUMEN

Sepsis is a leading cause of mortality worldwide, and pneumonia is the most common cause of sepsis in humans. Low levels of high-density lipoprotein cholesterol (HDL-C) levels are associated with an increased risk of death from sepsis, and increasing levels of HDL-C by inhibition of cholesteryl ester transfer protein (CETP) decreases mortality from intraabdominal polymicrobial sepsis in APOE*3-Leiden.CETP mice. Here, we show that treatment with the CETP inhibitor (CETPi) anacetrapib reduced mortality from Streptococcus pneumoniae-induced sepsis in APOE*3-Leiden.CETP and APOA1.CETP mice. Mechanistically, CETP inhibition reduced the host proinflammatory response via attenuation of proinflammatory cytokine transcription and release. This effect was dependent on the presence of HDL, leading to attenuation of immune-mediated organ damage. In addition, CETP inhibition promoted monocyte activation in the blood prior to the onset of sepsis, resulting in accelerated macrophage recruitment to the lung and liver. In vitro experiments demonstrated that CETP inhibition significantly promoted the activation of proinflammatory signaling in peripheral blood mononuclear cells and THP1 cells in the absence of HDL; this may represent a mechanism responsible for improved bacterial clearance during sepsis. These findings provide evidence that CETP inhibition represents a potential approach to reduce mortality from pneumosepsis.


Asunto(s)
Proteínas de Transferencia de Ésteres de Colesterol , Monocitos , Streptococcus pneumoniae , Animales , Femenino , Humanos , Ratones , Apolipoproteína E3/metabolismo , Proteínas de Transferencia de Ésteres de Colesterol/antagonistas & inhibidores , Proteínas de Transferencia de Ésteres de Colesterol/metabolismo , HDL-Colesterol/sangre , HDL-Colesterol/metabolismo , Modelos Animales de Enfermedad , Macrófagos/inmunología , Macrófagos/metabolismo , Monocitos/inmunología , Monocitos/metabolismo , Neumonía Neumocócica/inmunología , Neumonía Neumocócica/mortalidad , Neumonía Neumocócica/metabolismo , Neumonía Neumocócica/microbiología , Sepsis/inmunología , Sepsis/mortalidad , Sepsis/microbiología , Sepsis/metabolismo , Streptococcus pneumoniae/inmunología , Células THP-1
2.
J Appl Physiol (1985) ; 135(5): 1001-1011, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37767558

RESUMEN

Emphysema is one of the pathological hallmarks of chronic obstructive pulmonary disease. We have recently reported that radiofrequency therapy improves lung function in rodent models of emphysema. However, preclinical data using large animals is necessary for clinical translation. Here, we describe the work performed to establish a unilateral porcine emphysema model. Different doses of porcine pancreatic elastase (PPE) were instilled into the left lung of 10 Yucatan pigs. Three additional pigs were used as controls. Six weeks after instillation, lungs were harvested. Lung compliance was measured by a water displacement method and plethysmography. Systematic uniform random sampling of the left and right lungs was performed independently to measure alveolar surface area using micro-computed tomography (micro-CT) and histology. In pigs instilled with 725-750 U/kg of PPE (PPE group, n = 6), the compliance of the left lung was significantly higher by 37.6% than that of the right lung (P = 0.03) using the water displacement method. With plethysmography, the volume of the left lung was significantly larger than that of the right lung at 3, 5, and 10 cmH2O. Measurements from either micro-CT or histology images showed a significant decrease in alveolar surface area by 14.2% or 14.5% (P = 0.031) in the left lung compared with the right lung of the PPE group. A unilateral model for mild emphysema in Yucatan pigs has been established, which can now be used for evaluating novel therapeutics and interventional strategies.NEW & NOTEWORTHY For clinical translation, preclinical data using large animal models is necessary. However, papers describing an emphysema model in pigs, which are anatomically and physiologically similar to humans, are lacking. Here, we report success in creating a unilateral mild-emphysema model in pigs with only one single dose of porcine pancreatic elastase. This model will be useful in bringing novel technologies and therapies from small animals to humans with emphysema.


Asunto(s)
Enfisema , Enfisema Pulmonar , Humanos , Porcinos , Animales , Elastasa Pancreática/efectos adversos , Microtomografía por Rayos X , Pulmón , Enfisema/patología , Agua , Modelos Animales de Enfermedad
3.
Am J Physiol Lung Cell Mol Physiol ; 324(3): L358-L372, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36719077

RESUMEN

Mechanical forces affect the alveolar shape, depending on location and tissue composition, and vary during the respiratory cycle. This study performs alveolar morphomics in different lobes of human lungs using models generated from three-dimensional (3-D) micro-computed tomography (microCT) images. Cylindrical tissue samples (1.6 cm × 2 cm) were extracted from two nontransplantable donor lungs (one ex-smoker and one smoker, 3 samples per subject) that were air-inflated and frozen solid in liquid nitrogen vapor. Samples were scanned with microCT (11 µm/voxel). Within representative cubic regions of interest (5.5 mm edge length), alveoli were segmented to produce corresponding 3-D models from which quantitative data were obtained. The surface of segmented alveoli (n_alv_total = 23,587) was divided into individual planar surfaces (facets) and angles between facet normals were calculated. Moreover, the number of neighboring alveoli was estimated for every alveolus. In this study, we examined intraindividual differences in alveolar morphology, which were reproducible in the lungs of two subjects. The main aspects are higher mean alveolar volumes (v_alv: 6.64 × 106 and 6.63 × 106 µm3 vs. 5.78 × 106 and 6.29 × 106 µm3) and surface sizes (s_alv: 0.19 and 0.18 mm2 vs. 0.17 mm2 in both lower lobes) in both upper lung lobes compared with the lower lobes. An increasing number of facets (f_alv) from top to bottom (12 and 14 in the upper lobes; 14 and 15 in the lower lobes), as well as a decreasing number of alveolar neighbors (nei_alv: 9 and 8 in the upper lobes; 8 and 7 in the lower lobes) from the upper lobes to the lower lobes were observed. We could observe an increasing ratio of alveolar entrance size to the surface size of the alveoli from top to bottom (S_ratio_alv: 0.71 and 0.64 in the upper lobes, 0.73 and 0.70 in the lower lobes). The angles between facet normals (ang_alv) were larger in the upper lobes (67.72° and 62.44°) of both lungs than in the lower lobes (66.19° and 61.30°). By using this new approach of analyzing alveolar 3-D data, which enables the estimation of facet, neighbor, and shape characteristics, we aimed to establish the baseline measures for in-depth studies of mechanical conditions and morphology.


Asunto(s)
Pulmón , Alveolos Pulmonares , Humanos , Microtomografía por Rayos X , Pulmón/diagnóstico por imagen , Alveolos Pulmonares/diagnóstico por imagen , Mediciones del Volumen Pulmonar
4.
Histochem Cell Biol ; 155(2): 279-289, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33515079

RESUMEN

The alveolar ducts are connected to peripheral septal fibers which extend from the visceral pleura into interlobular septa, and are anchored to axial fibers in the small airways. Together these axial and septal fibers constitute a fiber continuum that provides tension and integrity throughout the lung. Building on the observations that alveolar ducts associated with sub-pleural alveoli are orientated perpendicular to the visceral pleura, and in parallel to each other, the goal of the present study was to investigate the nature of the collagen fiber organization within sub-pleural alveolar ducts in healthy control and elastase-induced emphysema murine lungs. Employing three-dimensional second harmonic generation imaging, the structural arrangement of fibrilar collagen fibers could be visualized in cleared murine lungs. In healthy control lungs, fibrilar collagen fibers within alveolar mouths formed the coiled collagen structure within the alveolar duct. In the elastase-treated emphysema lungs, there was loss of fibrilar collagen fibers (p < 0.01) and disruption of collagens structural organization as measured by the fibrillar collagen length (p < 0.01) and entropy (p < 0.01). Compared to the alveolar ducts from healthy controls, there was a significant increase in the area of cells (nm2, p < 0.001), and area of cells with cytoplasmic granules (nm2, p < 0.001) compared to emphysematous lungs. These results are consistent with the idea that one of the major contributors to the progressive loss of alveolar surfaces and elastic recoil in the emphysematous lung is loss of the structural integrity of the collagen scaffold that maintains the spatial relationships important for cell survival and lung function.


Asunto(s)
Colágeno/análisis , Alveolos Pulmonares/química , Enfisema Pulmonar/diagnóstico por imagen , Microscopía de Generación del Segundo Armónico , Animales , Masculino , Ratones , Ratones Endogámicos BALB C , Alveolos Pulmonares/metabolismo , Enfisema Pulmonar/metabolismo , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...