RESUMEN
This review focuses on the most recent advances in the understanding of the electrolyte transport-related mechanisms important for the development of severe inherited renal disorders, autosomal dominant (AD) and recessive (AR) forms of polycystic kidney disease (PKD). We provide here a basic overview of the origins and clinical aspects of ARPKD and ADPKD and discuss the implications of electrolyte transport in cystogenesis. Special attention is devoted to intracellular calcium handling by the cystic cells, with a focus on polycystins and fibrocystin, as well as other calcium level regulators, such as transient receptor potential vanilloid type 4 (TRPV4) channels, ciliary machinery, and purinergic receptor remodeling. Sodium transport is reviewed with a focus on the epithelial sodium channel (ENaC), and the role of chloride-dependent fluid secretion in cystic fluid accumulation is discussed. In addition, we highlight the emerging promising concepts in the field, such as potassium transport, and suggest some new avenues for research related to electrolyte handling.
Asunto(s)
Riñón/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Riñón Poliquístico Autosómico Dominante/metabolismo , Riñón Poliquístico Autosómico Recesivo/metabolismo , Equilibrio Hidroelectrolítico , Animales , Humanos , Transporte Iónico , Riñón/fisiopatología , Proteínas de Transporte de Membrana/genética , Mutación , Riñón Poliquístico Autosómico Dominante/genética , Riñón Poliquístico Autosómico Dominante/fisiopatología , Riñón Poliquístico Autosómico Recesivo/genética , Riñón Poliquístico Autosómico Recesivo/fisiopatología , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Canales Catiónicos TRPP/genética , Canales Catiónicos TRPP/metabolismoRESUMEN
Oral and gum health have long been associated with incidence and outcomes of cardiovascular disease. Periodontal disease increases myocardial infarction (MI) mortality by sevenfold through mechanisms that are not fully understood. The goal of this study was to evaluate whether lipopolysaccharide (LPS) from a periodontal pathogen accelerates inflammation after MI through memory T-cell activation. We compared four groups [no MI, chronic LPS, day 1 after MI, and day 1 after MI with chronic LPS (LPS + MI); n = 68 mice] using the mouse heart attack research tool 1.0 database and tissue bank coupled with new analyses and experiments. LPS + MI increased total CD8+ T cells in the left ventricle versus the other groups (P < 0.05 vs. all). Memory CD8+ T cells (CD44 + CD27+) were 10-fold greater in LPS + MI than in MI alone (P = 0.02). Interleukin (IL)-4 stimulated splenic CD8+ T cells away from an effector phenotype and toward a memory phenotype, inducing secretion of factors associated with the Wnt/ß-catenin signaling that promoted monocyte migration and decreased viability. To dissect the effect of CD8+ T cells after MI, we administered a major histocompatibility complex-I-blocking antibody starting 7 days before MI, which prevented effector CD8+ T-cell activation without affecting the memory response. The reduction in effector cells diminished infarct wall thinning but had no effect on macrophage numbers or MertK expression. LPS + MI + IgG attenuated macrophages within the infarct without effecting CD8+ T cells, suggesting these two processes were independent. Overall, our data indicate that effector and memory CD8+ T cells at post-MI day 1 are amplified by chronic LPS to potentially promote infarct wall thinning.NEW & NOTEWORTHY Although there is a well-documented link between periodontal disease and heart health, the mechanisms are unclear. Our study indicates that in response to circulating periodontal endotoxins, memory CD8+ T cells are activated, resulting in an acceleration of macrophage-mediated inflammation after MI. Blocking activation of effector CD8+ T cells had no effect on the macrophage numbers or wall thinning at post-MI day 1, indicating that this response was likely due in part to memory CD8+ T cells.
Asunto(s)
Linfocitos T CD8-positivos/inmunología , Memoria Inmunológica , Lipopolisacáridos , Activación de Linfocitos , Infarto del Miocardio/inmunología , Miocardio/inmunología , Periodontitis/inmunología , Porphyromonas gingivalis , Cicatrización de Heridas , Animales , Linfocitos T CD8-positivos/metabolismo , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Mediadores de Inflamación/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/metabolismo , Masculino , Ratones , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Miocardio/metabolismo , Miocardio/patología , Periodontitis/inducido químicamente , Periodontitis/metabolismo , Periodontitis/patología , Fagocitosis , Fenotipo , Factores de TiempoRESUMEN
Autosomal dominant (AD) and autosomal recessive (AR) polycystic kidney diseases (PKD) are severe multisystem genetic disorders characterized with formation and uncontrolled growth of fluid-filled cysts in the kidney, the spread of which eventually leads to the loss of renal function. Currently, there are no treatments for ARPKD, and tolvaptan is the only FDA-approved drug that alleviates the symptoms of ADPKD. However, tolvaptan has only a modest effect on disease progression, and its long-term use is associated with many side effects. Therefore, there is still a pressing need to better understand the fundamental mechanisms behind PKD development. This review highlights current knowledge about the fundamental aspects of PKD development (with a focus on ADPKD) including the PC1/PC2 pathways and cilia-associated mechanisms, major molecular cascades related to metabolism, mitochondrial bioenergetics, and systemic responses (hormonal status, levels of growth factors, immune system, and microbiome) that affect its progression. In addition, we discuss new information regarding non-pharmacological therapies, such as dietary restrictions, which can potentially alleviate PKD.
RESUMEN
Diuretics and renin-angiotensin system blockers are often insufficient to control the blood pressure (BP) in salt-sensitive (SS) subjects. Abundant data support the proposal that the level of atrial natriuretic peptide may correlate with the pathogenesis of SS hypertension. We hypothesized here that increasing atrial natriuretic peptide levels with sacubitril, combined with renin-angiotensin system blockage by valsartan, can be beneficial for alleviation of renal damage in a model of SS hypertension, the Dahl SS rat. To induce a BP increase, rats were challenged with a high-salt 4% NaCl diet for 21 days, and chronic administration of vehicle or low-dose sacubitril and/or valsartan (75 µg/day each) was performed. Urine flow, Na+ excretion, and water consumption were increased on the high-salt diet compared with the starting point (0.4% NaCl) in all groups but remained similar among the groups at the end of the protocol. Upon salt challenge, we observed a mild decrease in systolic BP and urinary neutrophil gelatinase-associated lipocalin levels (indicative of alleviated tubular damage) in the valsartan-treated groups. Sacubitril, as well as sacubitril/valsartan, attenuated the glomerular filtration rate decline induced by salt. Alleviation of protein cast formation and lower renal medullary fibrosis were observed in the sacubitril/valsartan- and valsartan-treated groups, but not when sacubitril alone was administered. Interestingly, proteinuria was mildly mitigated only in rats that received sacubitril/valsartan. Further studies of the effects of sacubitril/valsartan in the setting of SS hypertension, perhaps involving a higher dose of the drug, are warranted to determine if it can interfere with the progression of the disease.
Asunto(s)
Aminobutiratos/administración & dosificación , Antagonistas de Receptores de Angiotensina/administración & dosificación , Presión Sanguínea/efectos de los fármacos , Hipertensión/tratamiento farmacológico , Enfermedades Renales/tratamiento farmacológico , Tetrazoles/administración & dosificación , Valsartán/administración & dosificación , Aminobutiratos/uso terapéutico , Antagonistas de Receptores de Angiotensina/uso terapéutico , Animales , Compuestos de Bifenilo , Combinación de Medicamentos , Hipertensión/fisiopatología , Enfermedades Renales/fisiopatología , Masculino , Ratas , Ratas Endogámicas Dahl , Cloruro de Sodio Dietético , Tetrazoles/uso terapéutico , Valsartán/uso terapéuticoRESUMEN
Salt-sensitive (SS) hypertension is accompanied with an early onset of proteinuria, which results from the loss of glomerular podocytes. Here, we hypothesized that glomerular damage in the SS hypertension occurs in part due to mitochondria dysfunction, and we used a unique model of freshly isolated glomeruli to test this hypothesis. In order to mimic SS hypertension, we used Dahl SS rats, an established animal model. Animals were fed a 0.4% NaCl (normal salt, NS) diet or challenged with a high salt (HS) 4% NaCl diet for 21 days to induce an increase in blood pressure (BP). Similar to previous studies, we found that HS diet caused renal hypertrophy, increased BP, glomerulosclerosis, and renal lesions such as fibrosis and protein casts. We did not observe changes in mitochondrial biogenesis in the renal cortex or isolated glomeruli fractions. However, Seahorse assay performed on freshly isolated glomeruli revealed that basal mitochondrial respiration, maximal respiration, and spare respiratory capacity were lower in the HS compared to the NS group. Using confocal imaging and staining for mitochondrial H2O2 using mitoPY1, we detected an intensified response to an acute H2O2 application in the podocytes of the glomeruli isolated from the HS diet fed group. TEM analysis showed that glomerular mitochondria from the HS diet fed group have structural abnormalities (swelling, enlargement, less defined cristae). Therefore, we report that glomerular mitochondria in SS hypertension are functionally and structurally defective, and this impairment could eventually lead to loss of podocytes and proteinuria. Thus, the glomerular-mitochondria axis can be targeted in novel treatment strategies for hypertensive glomerulosclerosis.