Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biophys Rev ; 15(5): 921-937, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37974998

RESUMEN

For the last decades, significant progress has been made in studying the biological functions of H-bond networks in membrane proteins, proton transporters, receptors, and photosynthetic reaction centers. Increasing availability of the X-ray crystal and cryo-electron microscopy structures of photosynthetic complexes resolved with high atomic resolution provides a platform for their comparative analysis. It allows identifying structural factors that are ensuring the high quantum yield of the photochemical reactions and are responsible for the stability of the membrane complexes. The H-bond networks are known to be responsible for proton transport associated with electron transfer from the primary to the secondary quinone as well as in the processes of water oxidation in photosystem II. Participation of such networks in reactions proceeding on the periplasmic side of bacterial photosynthetic reaction centers is less studied. This review summarizes the current understanding of the role of H-bond networks on the donor side of photosynthetic reaction centers from purple bacteria. It is discussed that the networks may be involved in providing close association with mobile electron carriers, in light-induced proton transport, in regulation of the redox properties of bacteriochlorophyll cofactors, and in stabilization of the membrane protein structure at the interface of membrane and soluble phases.

2.
Biochemistry (Mosc) ; 84(5): 520-528, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31234766

RESUMEN

In our recent X-ray study, we demonstrated that substitution of the natural leucine residue M196 with histidine in the reaction center (RC) from Rhodobacter (Rba.) sphaeroides leads to formation of a close contact between the genetically introduced histidine and the primary electron donor P (bacteriochlorophylls (BChls) PA and PB dimer) creating a novel pigment-protein interaction that is not observed in native RCs. In the present work, the possible nature of this novel interaction and its effects on the electronic properties of P and the photochemical charge separation in isolated mutant RCs L(M196)H are investigated at room temperature using steady-state absorption spectroscopy, light-induced difference FTIR spectroscopy, and femtosecond transient absorption spectroscopy. The results are compared with the data obtained for the RCs from Rba. sphaeroides pseudo-wild type strain. It is shown that the L(M196)H mutation results in a decrease in intensity and broadening of the long-wavelength Qy absorption band of P at ~865 nm. Due to the mutation, there is also weakening of the electronic coupling between BChls in the radical cation P+ and increase in the positive charge localization on the PA molecule. Despite the significant perturbations of the electronic structure of P, the mutant RCs retain high electron transfer rates and quantum yield of the P+QA- state (QA is the primary quinone acceptor), which is close to the one observed in the native RCs. Comparison of our results with the literature data suggests that the imidazole group of histidine M196 forms a π-hydrogen bond with the π-electron system of the PB molecule in the P dimer. It is likely that the specific (T-shaped) spatial organization of the π-hydrogen interaction and its potential heterogeneity in relation to the bonding energy is, at least partially, the reason that this type of interaction between the protein and the pigment and quinone cofactors is not realized in the native RCs.


Asunto(s)
Proteínas Bacterianas/metabolismo , Histidina/metabolismo , Leucina/metabolismo , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Rhodobacter sphaeroides/metabolismo , Proteínas Bacterianas/genética , Cristalografía por Rayos X , Transporte de Electrón , Histidina/genética , Cinética , Leucina/genética , Mutagénesis Sitio-Dirigida , Proteínas del Complejo del Centro de Reacción Fotosintética/genética , Estructura Terciaria de Proteína , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/aislamiento & purificación , Espectroscopía Infrarroja por Transformada de Fourier
3.
Biochemistry (Mosc) ; 84(5): 570-574, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31234771

RESUMEN

Studying pigment-protein interactions in the photosynthetic reaction centers (RCs) is important for the understanding of detailed mechanisms of the photochemical process. This paper describes spectral and photochemical characteristics, pigment composition, and stability of the Rhodobacter sphaeroides RCs with the I(L177)Y and I(M206)Y amino acid substitutions. The obtained data are compared with the properties of I(L177)H, I(L177)D, and I(M206)H RCs reported previously. It is shown that the I(L177)Y and I(M206)Y mutations cause a similar shift of the QYP band in the absorption spectra of the mutant RCs and do not affect the distribution of the electron spin density within the photo-oxidized P+ dimer. The differences in the position and amplitude of the QYB band in the I(L177)Y and I(M206)Y RCs were determined. The results indicate the possibility of new pigment-protein interactions in the vicinity of monomeric bacteriochlorophylls in the A and B chains, which might be of interest for future research.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Bacterioclorofilas/química , Bacterioclorofilas/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Mutagénesis Sitio-Dirigida , Proteínas del Complejo del Centro de Reacción Fotosintética/química , Proteínas del Complejo del Centro de Reacción Fotosintética/genética , Estructura Terciaria de Proteína , Rhodobacter sphaeroides/metabolismo , Espectrofotometría
4.
Biochemistry (Mosc) ; 84(4): 370-379, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31228928

RESUMEN

This review focuses on recent experimental data obtained by site-directed mutagenesis of the reaction center in purple nonsulfur bacteria. The role of axial ligation of (bacterio)chlorophylls in the regulation of spectral and redox properties of these pigments, as well as correlation between the structure of chromophores and nature of their ligands, are discussed. Cofactor ligation in various types of reaction centers is compared, and possible reasons for observed differences are examined in the light of modern ideas on the evolution of photosynthesis.


Asunto(s)
Proteínas Bacterianas/metabolismo , Bacterioclorofilas/metabolismo , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Proteobacteria/metabolismo , Proteínas Bacterianas/genética , Bacterioclorofilas/química , Evolución Molecular , Ligandos , Mutagénesis Sitio-Dirigida , Fotosíntesis , Proteínas del Complejo del Centro de Reacción Fotosintética/genética , Rhodobacter sphaeroides/metabolismo
5.
Biochemistry (Mosc) ; 80(6): 647-53, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26531011

RESUMEN

In the bacterial photosynthetic reaction center (RC), asymmetric protein environment of the bacteriochlorophyll (BChl) dimer largely determines the photophysical and photochemical properties of the primary electron donor. Previously, we noticed significant differences in properties of Rhodobacter sphaeroides RCs with identical mutations in symmetry-related positions - I(M206)H and I(L177)H. The substitution I(L177)H resulted in covalent binding of BChl PA with the L-subunit, as well as in 6-coordination of BChl BB, whereas in RC I(M206)H no such changes of pigment-protein interactions were found. In addition, the yield of RC I(M206)H after its isolation from membranes was significantly lower than the yield of RC I(L177)H. This study shows that replacement of amino acid residues in the M203-M206 positions near BChls PB and BA by symmetry-related residues from the L-subunit near BChls PA and BB leads to further decrease in RC amount in the membranes associated obviously with poor assembly of the complex. Introduction of a new hydrogen bond between BChl PB and its protein environment by means of the F(M197)H mutation stabilized the mutant RC but did not affect its low yield. We suggest that the mutation I(M206)H and substitution of amino acid residues in M203-M205 positions could disturb glycolipid binding on the RC surface near BChl BA that is important for stable assembly of the complex in the membrane.


Asunto(s)
Bacterioclorofilas/genética , Proteínas del Complejo del Centro de Reacción Fotosintética/genética , Rhodobacter sphaeroides/genética , Sustitución de Aminoácidos , Bacterioclorofilas/metabolismo , Dimerización , Histidina/genética , Enlace de Hidrógeno , Mutagénesis Sitio-Dirigida , Mutación , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Rhodobacter sphaeroides/metabolismo
6.
Artículo en Inglés | MEDLINE | ID: mdl-23695564

RESUMEN

The electron and proton transport mediated by protein-bound cofactors in photosynthesis have been investigated by various methods in order to determine the energetics, the dynamics and the pathway of this process. In purple bacteria, primary photosynthetic charge separation and the build-up of a proton gradient across the periplasmic membrane are catalyzed by the photosynthetic reaction centre (RC). Here, the purification, crystallization and preliminary X-ray analysis of wild-type and L(M196)H-mutant RCs of Rhodobacter sphaeroides are presented, enabling study of the influence of the protein environment of the primary electron donor on the spectral properties and photochemical activity of the RC.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Mutación/genética , Proteínas del Complejo del Centro de Reacción Fotosintética/química , Proteínas del Complejo del Centro de Reacción Fotosintética/genética , Rhodobacter sphaeroides , Proteínas Bacterianas/aislamiento & purificación , Cristalización , Cristalografía por Rayos X , Proteínas del Complejo del Centro de Reacción Fotosintética/aislamiento & purificación , Rhodobacter sphaeroides/genética
7.
Biochemistry (Mosc) ; 78(1): 60-7, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23379560

RESUMEN

Primary charge separation dynamics in four mutant reaction centers (RCs) of the purple bacterium Rhodobacter sphaeroides with increased midpoint potential of the primary electron donor P (M160LH, L131LH, M197FH, and M160LH + L131LH + M197FH) have been studied by femtosecond transient absorption spectroscopy at room temperature. The decay of the excited singlet state in the wild-type and mutant RCs is complex and has two main exponential components, which indicates heterogeneity of electron transfer rates or the presence of reverse electron transfer reactions. The radical anion band of monomeric bacteriochlorophyll B(A) at 1020 nm was first observed in transient absorbance difference spectra of single mutants. This band remains visible, although with somewhat reduced amplitude, even at delays up to tens of picoseconds when stimulated emission is absent and the reaction centers are in the P(+)H(A)(-) state. The presence of this band in this time period indicates the existence of thermodynamic equilibrium between the P(+)B(A)(-)H(A) and P(+)B(A)H(A)(-) states. The data give grounds for assuming that the value of the energy difference between the states P*, P(+)B(A)(-)H(A), and P(+)B(A)H(A)(-) at early times is of the same order of magnitude as the energy kT at room temperature. Besides, monomeric bacteriochlorophyll B(A) is found to be an immediate electron acceptor in the single mutant RCs, where electron transfer is hampered due to increased energy of the P(+)B(A)(-) state with respect to P*.


Asunto(s)
Electrones , Mutación , Proteínas del Complejo del Centro de Reacción Fotosintética/genética , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Rhodobacter sphaeroides , Transporte de Electrón , Oxidación-Reducción , Proteínas del Complejo del Centro de Reacción Fotosintética/química , Rhodobacter sphaeroides/genética , Rhodobacter sphaeroides/metabolismo , Espectrofotometría Ultravioleta , Temperatura , Factores de Tiempo
8.
Biochim Biophys Acta ; 1817(8): 1407-17, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22365928

RESUMEN

To explore the influence of the I(L177)H single mutation on the properties of the nearest bacteriochlorophylls (BChls), three reaction centers (RCs) bearing double mutations were constructed in the photosynthetic purple bacterium Rhodobacter sphaeroides, and their properties and pigment content were compared with those of the correspondent single mutant RCs. Each pair of the mutations comprised the amino acid substitution I(L177)H and another mutation altering histidine ligand of BChl P(A) or BChl B(B). Contrary to expectations, the double mutation I(L177)H+H(L173)L does not bring about a heterodimer RC but causes a 46nm blue shift of the long-wavelength P absorbance band. The histidine L177 or a water molecule were suggested as putative ligands for P(A) in the RC I(L177)H+H(L173)L although this would imply a reorientation of the His backbone and additional rearrangements in the primary donor environment or even a repositioning of the BChl dimer. The crystal structure of the mutant I(L177)H reaction center determined to a resolution of 2.9Å shows changes at the interface region between the BChl P(A) and the monomeric BChl B(B). Spectral and pigment analysis provided evidence for ß-coordination of the BChl B(B) in the double mutant RC I(L177)H+H(M182)L and for its hexacoordination in the mutant reaction center I(L177)H. Computer modeling suggests involvement of two water molecules in the ß-coordination of the BChl B(B). Possible structural consequences of the L177 mutation affecting the coordination of the two BChls P(A) and B(B) are discussed. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.


Asunto(s)
Bacterioclorofilas/química , Proteínas del Complejo del Centro de Reacción Fotosintética/química , Rhodobacter sphaeroides/metabolismo , Cristalografía por Rayos X , Mutagénesis Sitio-Dirigida , Potenciometría
9.
Biochim Biophys Acta ; 1817(8): 1392-8, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22209778

RESUMEN

Primary charge separation dynamics in the reaction center (RC) of purple bacterium Rhodobacter sphaeroides and its P870 heterodimer mutants have been studied using femtosecond time-resolved spectroscopy with 20 and 40fs excitation at 870nm at 293K. Absorbance increase in the 1060-1130nm region that is presumably attributed to P(A)(δ+) cation radical molecule as a part of mixed state with a charge transfer character P*(P(A)(δ+)P(B)(δ-)) was found. This state appears at 120-180fs time delay in the wild type RC and even faster in H(L173)L and H(M202)L heterodimer mutants and precedes electron transfer (ET) to B(A) bacteriochlorophyll with absorption band at 1020nm in WT. The formation of the P(A)(δ+)B(A)(δ-) state is a result of the electron transfer from P*(P(A)(δ+)P(B)(δ-)) to the primary electron acceptor B(A) (still mixed with P*) with the apparent time delay of ~1.1ps. Next step of ET is accompanied by the 3-ps appearance of bacteriopheophytin a(-) (H(A)(-)) band at 960nm. The study of the wave packet formation upon 20-fs illumination has shown that the vibration energy of the wave packet promotes reversible overcoming of an energy barrier between two potential energy surfaces P* and P*(P(A)(δ+)B(A)(δ-)) at ~500fs. For longer excitation pulses (40fs) this promotion is absent and tunneling through an energy barrier takes about 3ps. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.


Asunto(s)
Rhodobacter sphaeroides/química , Mutación , Proteínas del Complejo del Centro de Reacción Fotosintética/química , Multimerización de Proteína
10.
Biochemistry (Mosc) ; 76(10): 1107-19, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22098236

RESUMEN

Primary stage of charge separation and transfer of charges was studied in reaction centers (RCs) of point mutants LL131H and LL131H/LM160H/FM197H of the purple bacterium Rhodobacter sphaeroides by differential absorption spectroscopy with temporal resolution of 18 fsec at 90 K. Difference absorption spectra measured at 0-4 psec delays after excitation of dimer P at 870 nm with 30 fsec step were obtained in the spectral range of 935-1060 nm. It was found that a decay of P* due to charge separation is considerably slower in the mutant RCs in comparison with native RCs of Rba. sphaeroides. Coherent oscillations were found in the kinetics of stimulated emission of the P* state at 940 nm. Fourier analysis of the oscillations revealed a set of characteristic bands in the frequency range of 20-500 cm(-1). The most intense band has the frequency of ~130 cm(-1) in RCs of mutant LL131H and in native RCs and the frequency of ~100 cm(-1) in RCs of the triple mutant. It was found that an absorption band of bacteriochlorophyll anion B(A)(-) which is registered in the difference absorption spectra of native RCs at 1020 nm is absent in the analogous spectra of the mutants. The results are analyzed in terms of the participation of the B(A) molecule in the primary electron transfer in the presence of a nuclear wave packet moving along the inharmonic surface of P* potential energy.


Asunto(s)
Fotosíntesis , Proteínas del Complejo del Centro de Reacción Fotosintética/química , Rhodobacter sphaeroides/enzimología , Bacterioclorofilas/química , Bacterioclorofilas/metabolismo , Transporte de Electrón , Cinética , Mutación , Proteínas del Complejo del Centro de Reacción Fotosintética/genética , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Espectroscopía de Absorción de Rayos X
11.
Biochemistry (Mosc) ; 76(4): 450-4, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21585320

RESUMEN

Histidine M182 in the reaction center (RC) of Rhodobacter sphaeroides serves as the fifth ligand of the bacteriochlorophyll (BChl) B(B) Mg atom. When this His is substituted by an amino acid that is not able to coordinate Mg, bacteriopheophytin appears in the B(B) binding site instead of BChl (Katilius, E., et al. (1999) J. Phys. Chem. B, 103, 7386-7389). We have shown that in the presence of the additional mutation I(L177)H the coordination of the BChl B(B) Mg atom in the double mutant I(L177)H+H(M182)L RC still remains. Changes in the double mutant RC absorption spectrum attributed to BChl absorption suggest that BChl B(B) Mg atom axial ligation might be realized not from the usual α-side of the BChl macrocycle, but from the opposite, ß-side. Weaker coordination of BChl B(B) Mg atom compared to the other mutant RC BChl molecules suggests that not an amino acid residue but a water molecule might be a possible ligand. The results are discussed in the light of the structural changes that occurred in the RC upon Ile/His substitution in the L177 position.


Asunto(s)
Proteínas del Complejo del Centro de Reacción Fotosintética/química , Rhodobacter sphaeroides/química , Sustitución de Aminoácidos , Bacterioclorofilas/química , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Feofitinas/química , Proteínas del Complejo del Centro de Reacción Fotosintética/genética , Conformación Proteica , Espectrofotometría
12.
Biochemistry (Mosc) ; 76(13): 1465-83, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22339599

RESUMEN

During photosynthesis light energy is converted into energy of chemical bonds through a series of electron and proton transfer reactions. Over the first ultrafast steps of photosynthesis that take place in the reaction center (RC) the quantum efficiency of the light energy transduction is nearly 100%. Compared to the plant and cyanobacterial photosystems, bacterial RCs are well studied and have relatively simple structure. Therefore they represent a useful model system both for manipulating of the electron transfer parameters to study detailed mechanisms of its separate steps as well as to investigate the common principles of the photosynthetic RC structure, function, and evolution. This review is focused on the research papers devoted to chemical and genetic modifications of the RCs of purple bacteria in order to study principles and mechanisms of their functioning. Investigations of the last two decades show that the maximal rates of the electron transfer reactions in the RC depend on a number of parameters. Chemical structure of the cofactors, distances between them, their relative orientation, and interactions to each other are of great importance for this process. By means of genetic and spectral methods, it was demonstrated that RC protein is also an essential factor affecting the efficiency of the photochemical charge separation. Finally, some of conservative water molecules found in RC not only contribute to stability of the protein structure, but are directly involved in the functioning of the complex.


Asunto(s)
Proteínas Bacterianas/química , Proteínas del Complejo del Centro de Reacción Fotosintética/química , Sustitución de Aminoácidos , Apoproteínas/química , Apoproteínas/genética , Proteínas Bacterianas/genética , Coenzimas/química , Transporte de Electrón , Mutagénesis Sitio-Dirigida , Operón , Proteínas del Complejo del Centro de Reacción Fotosintética/genética , Proteobacteria/enzimología , Proteobacteria/genética , Termodinámica
13.
Biochemistry (Mosc) ; 75(7): 832-40, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20673206

RESUMEN

The role of tyrosine M210 in charge separation and stabilization of separated charges was studied by analyzing of the femtosecond oscillations in the kinetics of decay of stimulated emission from P* and of a population of the primary charge separated state P(+)B(A)(-) in YM210L and YM210L/HL168L mutant reaction centers (RCs) of Rhodobacter sphaeroides in comparison with those in native Rba. sphaeroides RCs. In the mutant RCs, TyrM210 was replaced by Leu. The HL168L mutation placed the redox potential of the P(+)/P pair 123 mV below that of native RCs, thus creating a theoretical possibility of P(+)B(A)(-) stabilization. Kinetics of P* decay at 940 nm of both mutants show a significant slowing of the primary charge separation reaction in comparison with native RCs. Distinct damped oscillations in these kinetics with main frequency bands in the range of 90-150 cm(-1) reflect mostly nuclear motions inside the dimer P. Formation of a very small absorption band of B(A)(-) at 1020 nm is registered in RCs of both mutants. The formation of the B(A)(-) band is accompanied by damped oscillations with main frequencies from ~10 to ~150 cm(-1). Only a partial stabilization of the P(+)B(A)(-) state is seen in the YM210L/HL168L mutant in the form of a small non-oscillating background of the 1020-nm kinetics. A similar charge stabilization is absent in the YM210L mutant. A model of oscillatory reorientation of the OH-group of TyrM210 in the electric fields of P(+) and B(A)(-) is proposed to explain rapid stabilization of the P(+)B(A)(-) state in native RCs. Small oscillatory components at ~330-380 cm(-1) in the 1020-nm kinetics of native RCs are assumed to reflect this reorientation. We conclude that the absence of TyrM210 probably cannot be compensated by lowering of the P(+)B(A)(-) free energy that is expected for the double YM210L/HL168L mutant. An oscillatory motion of the HOH55 water molecule under the influence of P(+) and B(A)(-) is assumed to be another potential contributor to the mechanism of P(+)B(A)(-) stabilization.


Asunto(s)
Proteínas Bacterianas/metabolismo , Mutación Missense , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Rhodobacter sphaeroides/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Transporte de Electrón , Cinética , Oxidación-Reducción , Proteínas del Complejo del Centro de Reacción Fotosintética/química , Proteínas del Complejo del Centro de Reacción Fotosintética/genética , Rhodobacter sphaeroides/química , Rhodobacter sphaeroides/genética
14.
Biochemistry (Mosc) ; 75(2): 208-13, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20367608

RESUMEN

We demonstrated earlier that as a result of the I(L177)H mutation in the photosynthetic reaction center (RC) of the bacterium Rhodobacter sphaeroides, one of the bacteriochlorophylls (BChl) binds with the L-subunit, simultaneously raising coordination stability of the central magnesium atom of the bacteriochlorophyll associated with the protein. In this study, spectral properties of wild type RC and I(L177)H in the presence of urea and SDS as well as at 48 degrees C were examined. It is shown that the I(L177)H mutation decreases the RC stability. Under denaturing conditions, some changes indicating breakdown of oligomeric structure of the complex and loss of interaction between pigments and their protein environment are observed in I(L177)H RC spectra. In addition, pheophytinization of bacteriochlorophylls occurs in both types of RC in the presence of SDS. However, an 811-nm band is observed in the spectrum of the mutant RC under these conditions, which indicates retention of one of the BChl molecules in the protein binding site and stable coordination of its central magnesium atom. It is shown that in both types of RC, monomeric BChl B(B) can be modified by sodium borohydride treatment and then extracted by acetone-methanol mixture. Spectral properties of the BChl covalently bound with the protein in I(L177)H RC do not change. The results demonstrate that BChl P(A) is the molecule of BChl tightly bound with the L-subunit in mutant RC as it was supposed earlier.


Asunto(s)
Bacterioclorofilas/metabolismo , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutación , Proteínas del Complejo del Centro de Reacción Fotosintética/química , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Rhodobacter sphaeroides/metabolismo , Absorción , Calor , Proteínas Mutantes/genética , Proteínas del Complejo del Centro de Reacción Fotosintética/genética , Unión Proteica/efectos de los fármacos , Estabilidad Proteica/efectos de los fármacos , Rhodobacter sphaeroides/genética , Dodecil Sulfato de Sodio/farmacología , Análisis Espectral , Urea/farmacología
15.
Biochemistry (Mosc) ; 74(11): 1203-10, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19916934

RESUMEN

Difference femtosecond absorption spectroscopy with 20-fsec temporal resolution was applied to study a primary stage of charge separation and transfer processes in reaction centers of YM210L and YM210L/FM197Y site-directed mutants of the purple bacterium Rhodobacter sphaeroides at 90 K. Photoexcitation was tuned to the absorption band of the primary electron donor P at 880 nm. Coherent oscillations in the kinetics of stimulated emission of P* excited state at 940 nm and of anion absorption of monomeric bacteriochlorophyll B(A)(-) at 1020 nm were monitored. The absence of tyrosine YM210 in RCs of both mutants leads to strong slowing of the primary reaction P* --> P(+)B(A)(-) and to the absence of stabilization of separated charges in the state P(+)B(A)(-). Mutation FM197Y increases effective mass of an acetyl group of pyrrole ring I in the bacteriochlorophyll molecule P(B) of the double mutant YM210L/FM197Y by a hydrogen bond with OH-TyrM197 group that leads to a decrease in the frequency of coherent nuclear motions from 150 cm(-1) in the single mutant YM210L to ~100 cm(-1) in the double mutant. Oscillations with 100-150 cm(-1) frequencies in the dynamics of the P* stimulated emission and in the kinetics of the reversible formation of P(+)B(A)(-) state of both mutants reflect a motion of the P(B) molecule relatively to P(A) in the area of mutual overlapping of their pyrrole rings I. In the double mutant YM210L/FM197Y the oscillations in the P* emission band and the B(A)(-) absorption band are conserved within a shorter time ~0.5 psec (1.5 psec in the YM210L mutant), which may be a consequence of an increase in the number of nuclei forming a wave packet by adding a supplementary mass to the dimer P.


Asunto(s)
Mutación , Proteínas del Complejo del Centro de Reacción Fotosintética/química , Rhodobacter sphaeroides/química , Rhodobacter sphaeroides/genética , Bacterioclorofilas/química , Cinética , Proteínas del Complejo del Centro de Reacción Fotosintética/genética , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Rhodobacter sphaeroides/metabolismo , Análisis Espectral
16.
Biochemistry (Mosc) ; 74(8): 846-54, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19817684

RESUMEN

Difference absorption spectroscopy with temporal resolution of approximately 20 fsec was used to study the primary phase of charge separation in isolated reaction centers (RCs) of Chloroflexus aurantiacus at 90 K. An ensemble of difference (light-minus-dark) absorption spectra in the 730-795 nm region measured at -0.1 to 4 psec delays relative to the excitation pulse was analyzed. Comparison with analogous data for RCs of HM182L mutant of Rhodobacter sphaeroides having the same pigment composition identified the 785 nm absorption band as the band of bacteriopheophytin Phi(B) in the B-branch. By study the bleaching of this absorption band due to formation of Phi(B)(-), it was found that a coherent electron transfer from P* to the B-branch occurs with a very small delay of 10-20 fsec after excitation of dimer bacteriochlorophyll P. Only at 120 fsec delay electron transfer from P* to the A-branch occurs with the formation of bacteriochlorophyll anion B(A)(-) absorption band at 1028 nm and the appearance of P* stimulated emission at 940 nm, as also occurs in native RCs of Rb. sphaeroides. It is concluded that a nuclear wave packet motion on the potential energy surface of P* after a 20-fsec light pulse excitation leads to the coherent formation of the P(+)Phi(B)(-) and P(+)B(A)(-) states.


Asunto(s)
Chloroflexus/química , Proteínas del Complejo del Centro de Reacción Fotosintética/química , Chloroflexus/metabolismo , Transporte de Electrón , Cinética , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Análisis Espectral
17.
Biochemistry (Mosc) ; 74(4): 452-60, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19463100

RESUMEN

Mutant reaction centers (RC) from Rhodobacter sphaeroides have been studied in which histidine L153, the axial ligand of the central Mg atom of bacteriochlorophyll B(A) molecule, was substituted by cysteine, methionine, tyrosine, or leucine. None of the mutations resulted in conversion of the bacteriochlorophyll B(A) to a bacteriopheophytin molecule. Isolated H(L153)C and H(L153)M RCs demonstrated spectral properties similar to those of the wild-type RC, indicating the ability of cysteine and methionine to serve as stable axial ligands of the Mg atom of bacteriochlorophyll B(A). Because of instability of mutant H(L153)L and H(L153)Y RCs, their properties were studied without isolation of these complexes from the photosynthetic membranes. The most prominent effect of the mutations was observed with substitution of histidine by tyrosine. According to the spectral data and the results of pigment analysis, the B(A) molecule is missing in the H(L153)Y RC. Nevertheless, being associated with the photosynthetic membrane, this RC can accomplish photochemical charge separation with quantum yield of approximately 7% of that characteristic of the wild-type RC. Possible pathways of the primary electron transport in the H(L153)Y RC in absence of photochemically active chromophore are discussed.


Asunto(s)
Sustitución de Aminoácidos , Bacterioclorofilas/metabolismo , Histidina/genética , Magnesio/metabolismo , Mutación , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Rhodobacter sphaeroides/metabolismo , Bacterioclorofilas/química , Bacterioclorofilas/genética , Histidina/metabolismo , Ligandos , Conformación Molecular , Proteínas del Complejo del Centro de Reacción Fotosintética/química , Proteínas del Complejo del Centro de Reacción Fotosintética/genética , Unión Proteica , Rhodobacter sphaeroides/química , Rhodobacter sphaeroides/genética
18.
Biochemistry (Mosc) ; 74(1): 68-74, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19232051

RESUMEN

Methods of photoinduced Fourier transform infrared (FTIR) difference spectroscopy and circular dichroism were employed for studying features of pigment-protein interactions caused by replacement of isoleucine L177 by histidine in the reaction center (RC) of the site-directed mutant I(L177)H of Rhodobacter sphaeroides. A functional state of pigments in the photochemically active cofactor branch was evaluated with the method of photo-accumulation of reduced bacteriopheophytin H(A)(-). The results are compared with those obtained for wild-type RCs. It was shown that the dimeric nature of the radical cation of the primary electron donor P was preserved in the mutant RCs, with an asymmetric charge distribution between the bacteriochlorophylls P(A) and P(B) in the P(+) state. However, the dimers P in the wild-type and mutant RCs are not structurally identical due probably to molecular rearrangements of the P(A) and P(B) macrocycles and/or alterations in their nearest amino acid environment induced by the mutation. Analysis of the electronic absorption and FTIR difference P(+)Q(-)/PQ spectra suggests the 17(3)-ester group of the bacteriochlorophyll P(A) to be involved in covalent interaction with the I(L177)H RC protein. Incorporation of histidine into the L177 position does not modify the interaction between the primary electron acceptor bacteriochlorophyll B(A) and the bacteriopheophytin H(A). Structural changes are observed in the monomer bacteriochlorophyll B(B) binding site in the inactive chromophore branch of the mutant RCs.


Asunto(s)
Proteínas Bacterianas/química , Bacterioclorofila A/química , Proteínas del Complejo del Centro de Reacción Fotosintética/química , Pigmentos Biológicos/química , Rhodobacter sphaeroides/metabolismo , Sustitución de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bacterioclorofila A/metabolismo , Bacterioclorofilas/metabolismo , Dicroismo Circular , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/aislamiento & purificación , Proteínas Mutantes/metabolismo , Oxidación-Reducción , Proteínas del Complejo del Centro de Reacción Fotosintética/genética , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Pigmentos Biológicos/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier
19.
Biochemistry (Mosc) ; 70(11): 1256-61, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16336186

RESUMEN

Using site-directed mutagenesis, we obtained the mutant of the purple bacterium Rhodobacter sphaeroides with Ile to His substitution at position 177 in the L-subunit of the photosynthetic reaction center (RC). The mutant strain forms stable and photochemically active RC complexes. Relative to the wild type RCs, the spectral and photochemical properties of the mutant RC differ significantly in the absorption regions corresponding to the primary donor P and the monomer bacteriochlorophyll (BChl) absorption. It is shown that the RC I(L177)H contains only three BChl molecules compared to four BChl molecules in the wild type RC. Considering the fact that the properties of both isolated and membrane-associated mutant RCs are similar, we conclude that the loss of a BChl molecule from the mutant RC is caused by the introduced mutation but not by the protein purification procedure. The new mutant missing one BChl molecule but still able to perform light-induced reactions forming the charge-separated state P+QA- appears to be an interesting object to study the mechanisms of the first steps of the primary electron transfer in photosynthesis.


Asunto(s)
Histidina/metabolismo , Isoleucina/metabolismo , Pigmentos Biológicos/metabolismo , Rhodobacter sphaeroides/metabolismo , Sustitución de Aminoácidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...