Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Res Sq ; 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39108479

RESUMEN

Intracerebral hemorrhage (ICH) poses acute fatality and long-term neurological risks due to hemin and iron accumulation from hemoglobin breakdown. Our observation that hemin induces DNA double-strand breaks (DSBs), prompting a senescence-like phenotype in neurons, necessitating deeper exploration of cellular responses. Using experimental ICH models and human ICH patient tissue, we elucidate hemin-mediated DNA damage response (DDR) inducing transient senescence and delayed expression of heme oxygenase (HO-1). HO-1 co-localizes with senescence-associated ß-Galactosidase (SA-ß-Gal) in ICH patient tissues, emphasizing clinical relevance of inducible HO-1 expression in senescent cells. We reveal a reversible senescence state protective against acute cell death by hemin, while repeat exposure leads to long-lasting senescence. Inhibiting early senescence expression increases cell death, supporting the protective role of senescence against hemin toxicity. Hemin-induced senescence is attenuated by a pleiotropic carbon nanoparticle that is a catalytic mimic of superoxide dismutase, but this treatment increased lipid peroxidation, consistent with ferroptosis from hemin breakdown released iron. When coupled with iron chelator deferoxamine (DEF), the nanoparticle reduces hemin-induced senescence and upregulates factors protecting against ferroptosis. Our study suggests transient senescence induced by DDR as an early potential neuroprotective mechanism in ICH, but the risk or iron-related toxicity supports a multi-pronged therapeutic approach.

2.
bioRxiv ; 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38798341

RESUMEN

TDP43 is an RNA/DNA binding protein increasingly recognized for its role in neurodegenerative conditions including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). As characterized by its aberrant nuclear export and cytoplasmic aggregation, TDP43 proteinopathy is a hallmark feature in over 95% of ALS/FTD cases, leading to the formation of detrimental cytosolic aggregates and a reduction in nuclear functionality within neurons. Building on our prior work linking TDP43 proteinopathy to the accumulation of DNA double-strand breaks (DSBs) in neurons, the present investigation uncovers a novel regulatory relationship between TDP43 and DNA mismatch repair (MMR) gene expressions. Here, we show that TDP43 depletion or overexpression directly affects the expression of key MMR genes. Alterations include MLH1, MSH2, MSH3, MSH6, and PMS2 levels across various primary cell lines, independent of their proliferative status. Our results specifically establish that TDP43 selectively influences the expression of MLH1 and MSH6 by influencing their alternative transcript splicing patterns and stability. We furthermore find aberrant MMR gene expression is linked to TDP43 proteinopathy in two distinct ALS mouse models and post-mortem brain and spinal cord tissues of ALS patients. Notably, MMR depletion resulted in the partial rescue of TDP43 proteinopathy-induced DNA damage and signaling. Moreover, bioinformatics analysis of the TCGA cancer database reveals significant associations between TDP43 expression, MMR gene expression, and mutational burden across multiple cancers. Collectively, our findings implicate TDP43 as a critical regulator of the MMR pathway and unveil its broad impact on the etiology of both neurodegenerative and neoplastic pathologies.

3.
Res Sq ; 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38464024

RESUMEN

Mitochondrial dysfunction is a central aspect of Parkinson's disease (PD) pathology, yet the underlying mechanisms are not fully understood. This study investigates the link between α-Synuclein (α-Syn) pathology and the loss of translocase of the outer mitochondrial membrane 40 (TOM40), unraveling its implications for mitochondrial dysfunctions in neurons. We discovered that TOM40 protein depletion occurs in the brains of patients with Guam Parkinsonism Dementia (Guam PD) and cultured neurons expressing α-Syn proteinopathy, notably, without corresponding changes in TOM40 mRNA levels. Cultured neurons expressing α-Syn mutants, with or without a mitochondria-targeting signal (MTS) underscore the role of α-Syn's mitochondrial localization in inducing TOM40 degradation. Parkinson's Disease related etiological factors, such as 6-hydroxy dopamine or ROS/metal ions stress, which promote α-Syn oligomerization, exacerbate TOM40 depletion in PD patient-derived cells with SNCA gene triplication. Although α-Syn interacts with both TOM40 and TOM20 in the outer mitochondrial membrane, degradation is selective for TOM40, which occurs via the ubiquitin-proteasome system (UPS) pathway. Our comprehensive analyses using Seahorse technology, mitochondrial DNA sequencing, and damage assessments, demonstrate that mutant α-Syn-induced TOM40 loss results in mitochondrial dysfunction, characterized by reduced membrane potential, accumulation of mtDNA damage, deletion/insertion mutations, and altered oxygen consumption rates. Notably, ectopic supplementation of TOM40 or reducing pathological forms of α-Syn using ADP-ribosylation inhibitors ameliorate these mitochondrial defects, suggesting potential therapeutic avenues. In conclusion, our findings provide crucial mechanistic insights into how α-Syn accumulation leads to TOM40 degradation and mitochondrial dysfunction, offering insights for targeted interventions to alleviate mitochondrial defects in PD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...