Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Phys Rev Lett ; 132(17): 176303, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38728724

RESUMEN

Although integrable spin chains host only ballistically propagating particles, they can still feature diffusive charge transfer. This diffusive charge transfer originates from quasiparticle charge fluctuations inherited from the initial state's magnetization Gaussian fluctuations. We show that ensembles of initial states with quasi-long-range correlations lead to superdiffusive charge transfer with a tunable dynamical exponent. We substantiate our prediction with numerical simulations and discuss how finite time and finite size effects might cause deviations.

2.
Phys Rev Lett ; 131(21): 210402, 2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38072585

RESUMEN

We investigate the full counting statistics of charge transport in U(1)-symmetric random unitary circuits. We consider an initial mixed state prepared with a chemical potential imbalance between the left and right halves of the system and study the fluctuations of the charge transferred across the central bond in typical circuits. Using an effective replica statistical mechanics model and a mapping onto an emergent classical stochastic process valid at large on-site Hilbert space dimension, we show that charge transfer fluctuations approach those of the symmetric exclusion process at long times, with subleading t^{-1/2} quantum corrections. We discuss our results in the context of fluctuating hydrodynamics and macroscopic fluctuation theory of classical nonequilibrium systems and check our predictions against direct matrix-product state calculations.

3.
Phys Rev Lett ; 131(19): 197102, 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-38000404

RESUMEN

Finite temperature spin transport in integrable isotropic spin chains is known to be superdiffusive, with dynamical spin correlations that are conjectured to fall into the Kardar-Parisi-Zhang (KPZ) universality class. However, integrable spin chains have time-reversal and parity symmetries that are absent from the KPZ (Kardar-Parisi-Zhang) or stochastic Burgers equation, which force higher-order spin fluctuations to deviate from standard KPZ predictions. We put forward a nonlinear fluctuating hydrodynamic theory consisting of two coupled stochastic modes: the local spin magnetization and its effective velocity. Our theory fully explains the emergence of anomalous spin dynamics in isotropic chains: it predicts KPZ scaling for the spin structure factor but with a symmetric, quasi-Gaussian, distribution of spin fluctuations. We substantiate our results using matrix-product states calculations.

4.
Phys Rev Lett ; 130(24): 247101, 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37390446

RESUMEN

We analyze the onset of diffusive hydrodynamics in the one-dimensional hard-rod gas subject to stochastic backscattering. While this perturbation breaks integrability and leads to a crossover from ballistic to diffusive transport, it preserves infinitely many conserved quantities corresponding to even moments of the velocity distribution of the gas. In the limit of small noise, we derive the exact expressions for the diffusion and structure factor matrices, and show that they generically have off diagonal components. We find that the particle density structure factor is non-Gaussian and singular near the origin, with a return probability showing logarithmic deviations from diffusion.


Asunto(s)
Hidrodinámica , Difusión , Probabilidad
5.
Phys Rev Lett ; 130(4): 046001, 2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36763442

RESUMEN

We introduce and explore an interacting integrable cellular automaton, the Fredkin staircase, that lies outside the existing classification of such automata, and has a structure that seems to lie beyond that of any existing Bethe-solvable model. The Fredkin staircase has two families of ballistically propagating quasiparticles, each with infinitely many species. Despite the presence of ballistic quasiparticles, charge transport is diffusive in the dc limit, albeit with a highly non-Gaussian dynamic structure factor. Remarkably, this model exhibits persistent temporal oscillations of the current, leading to a delta-function singularity (Drude peak) in the ac conductivity at nonzero frequency. We analytically construct an extensive set of operators that anticommute with the time-evolution operator; the existence of these operators both demonstrates the integrability of the model and allows us to lower bound the weight of this finite-frequency singularity.

6.
Rep Prog Phys ; 86(3)2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36645909

RESUMEN

Many experimentally relevant quantum spin chains are approximately integrable, and support long-lived quasiparticle excitations. A canonical example of integrable model of quantum magnetism is the XXZ spin chain, for which energy spreads ballistically, but, surprisingly, spin transport can be diffusive or superdiffusive. We review the transport properties of this model using an intuitive quasiparticle picture that relies on the recently introduced framework of generalized hydrodynamics. We discuss how anomalous linear response properties emerge from hierarchies of quasiparticles both in integrable and near-integrable limits, with an emphasis on the role of hydrodynamic fluctuations. We also comment on recent developments including non-linear response, full-counting statistics and far-from-equilibrium transport. We provide an overview of recent numerical and experimental results on transport in XXZ spin chains.

7.
Phys Rev Lett ; 131(25): 256505, 2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38181371

RESUMEN

We demonstrate that nonlinear response functions in many-body systems carry a sharp signature of interactions between gapped low-energy quasiparticles. Such interactions are challenging to deduce from linear response measurements. The signature takes the form of a divergent-in-time contribution to the response-linear in time in the case when quasiparticles propagate ballistically-that is absent for free bosonic excitations. We give a physically transparent semiclassical picture of this singular behavior. While the semiclassical picture applies to a broad class of systems we benchmark it in two simple models: in the Ising chain using a form-factor expansion, and in a nonintegrable model-the spin-1 Affleck-Kennedy-Lieb-Tasaki chain-using time-dependent density matrix renormalization group simulations. We comment on extensions of these results to finite temperatures.

8.
Phys Rev Lett ; 129(20): 200602, 2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36461989

RESUMEN

We consider monitored quantum systems with a global conserved charge, and ask how efficiently an observer ("eavesdropper") can learn the global charge of such systems from local projective measurements. We find phase transitions as a function of the measurement rate, depending on how much information about the quantum dynamics the eavesdropper has access to. For random unitary circuits with U(1) symmetry, we present an optimal classical classifier to reconstruct the global charge from local measurement outcomes only. We demonstrate the existence of phase transitions in the performance of this classifier in the thermodynamic limit. We also study numerically improved classifiers by including some knowledge about the unitary gates pattern.

9.
Phys Rev Lett ; 129(12): 120604, 2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36179163

RESUMEN

Monitored quantum circuits (MRCs) exhibit a measurement-induced phase transition between area-law and volume-law entanglement scaling. MRCs with a conserved charge additionally exhibit two distinct volume-law entangled phases that cannot be characterized by equilibrium notions of symmetry-breaking or topological order, but rather by the nonequilibrium dynamics and steady-state distribution of charge fluctuations. These include a charge-fuzzy phase in which charge information is rapidly scrambled leading to slowly decaying spatial fluctuations of charge in the steady state, and a charge-sharp phase in which measurements collapse quantum fluctuations of charge without destroying the volume-law entanglement of neutral degrees of freedom. By taking a continuous-time, weak-measurement limit, we construct a controlled replica field theory description of these phases and their intervening charge-sharpening transition in one spatial dimension. We find that the charge fuzzy phase is a critical phase with continuously evolving critical exponents that terminates in a modified Kosterlitz-Thouless transition to the short-range correlated charge-sharp phase. We numerically corroborate these scaling predictions also hold for discrete-time projective-measurement circuit models using large-scale matrix-product state simulations, and discuss generalizations to higher dimensions.

10.
Proc Natl Acad Sci U S A ; 119(34): e2202823119, 2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-35969776

RESUMEN

We address spin transport in the easy-axis Heisenberg spin chain subject to different integrability-breaking perturbations. We find subdiffusive spin transport characterized by dynamical exponent z = 4 up to a timescale parametrically long in the anisotropy. In the limit of infinite anisotropy, transport is subdiffusive at all times; for finite anisotropy, one eventually recovers diffusion at late times but with a diffusion constant independent of the strength of the perturbation and solely fixed by the value of the anisotropy. We provide numerical evidence for these findings, and we show how they can be understood in terms of the dynamical screening of the relevant quasiparticle excitations and effective dynamical constraints. Our results show that the diffusion constant of near-integrable diffusive spin chains is generically not perturbative in the integrability-breaking strength.

11.
Nature ; 607(7919): 463-467, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35859195

RESUMEN

Nascent platforms for programmable quantum simulation offer unprecedented access to new regimes of far-from-equilibrium quantum many-body dynamics in almost isolated systems. Here achieving precise control over quantum many-body entanglement is an essential task for quantum sensing and computation. Extensive theoretical work indicates that these capabilities can enable dynamical phases and critical phenomena that show topologically robust methods to create, protect and manipulate quantum entanglement that self-correct against large classes of errors. However, so far, experimental realizations have been confined to classical (non-entangled) symmetry-breaking orders1-5. In this work, we demonstrate an emergent dynamical symmetry-protected topological phase6, in a quasiperiodically driven array of ten 171Yb+ hyperfine qubits in Quantinuum's System Model H1 trapped-ion quantum processor7. This phase shows edge qubits that are dynamically protected from control errors, cross-talk and stray fields. Crucially, this edge protection relies purely on emergent dynamical symmetries that are absolutely stable to generic coherent perturbations. This property is special to quasiperiodically driven systems: as we demonstrate, the analogous edge states of a periodically driven qubit array are vulnerable to symmetry-breaking errors and quickly decohere. Our work paves the way for implementation of more complex dynamical topological orders8,9 that would enable error-resilient manipulation of quantum information.

12.
Phys Rev Lett ; 127(23): 230602, 2021 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-34936767

RESUMEN

We investigate the spectral and transport properties of many-body quantum systems with conserved charges and kinetic constraints. Using random unitary circuits, we compute ensemble-averaged spectral form factors and linear-response correlation functions, and find that their characteristic timescales are given by the inverse gap of an effective Hamiltonian-or equivalently, a transfer matrix describing a classical Markov process. Our approach allows us to connect directly the Thouless time, t_{Th}, determined by the spectral form factor, to transport properties and linear-response correlators. Using tensor network methods, we determine the dynamical exponent z for a number of constrained, conserving models. We find universality classes with diffusive, subdiffusive, quasilocalized, and localized dynamics, depending on the severity of the constraints. In particular, we show that quantum systems with "Fredkin" constraints exhibit anomalous transport with dynamical exponent z≃8/3.

13.
Cancers (Basel) ; 13(22)2021 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-34830899

RESUMEN

The HER2 receptor and its MUC4 mucin partner form an oncogenic complex via an extracellular region of MUC4 encompassing three EGF domains that promotes tumor progression of pancreatic cancer (PC) cells. However, the molecular mechanism of interaction remains poorly understood. Herein, we decipher at the molecular level the role and impact of the MUC4EGF domains in the mediation of the binding affinities with HER2 and the PC cell tumorigenicity. We used an integrative approach combining in vitro bioinformatic, biophysical, biochemical, and biological approaches, as well as an in vivo study on a xenograft model of PC. In this study, we specified the binding mode of MUC4EGF domains with HER2 and demonstrate their "growth factor-like" biological activities in PC cells leading to stimulation of several signaling proteins (mTOR pathway, Akt, and ß-catenin) contributing to PC progression. Molecular dynamics simulations of the MUC4EGF/HER2 complexes led to 3D homology models and identification of binding hotspots mediating binding affinity with HER2 and PC cell proliferation. These results will pave the way to the design of potential MUC4/HER2 inhibitors targeting the EGF domains of MUC4. This strategy will represent a new efficient alternative to treat cancers associated with MUC4/HER2 overexpression and HER2-targeted therapy failure as a new adapted treatment to patients.

14.
Proc Natl Acad Sci U S A ; 118(37)2021 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-34493671

RESUMEN

We develop a formalism for computing the nonlinear response of interacting integrable systems. Our results are asymptotically exact in the hydrodynamic limit where perturbing fields vary sufficiently slowly in space and time. We show that spatially resolved nonlinear response distinguishes interacting integrable systems from noninteracting ones, exemplifying this for the Lieb-Liniger gas. We give a prescription for computing finite-temperature Drude weights of arbitrary order, which is in excellent agreement with numerical evaluation of the third-order response of the XXZ spin chain. We identify intrinsically nonperturbative regimes of the nonlinear response of integrable systems.

15.
Phys Rev Lett ; 127(5): 057201, 2021 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-34397245

RESUMEN

Superdiffusive finite-temperature transport has been recently observed in a variety of integrable systems with non-Abelian global symmetries. Superdiffusion is caused by giant Goldstone-like quasiparticles stabilized by integrability. Here, we argue that these giant quasiparticles remain long-lived and give divergent contributions to the low-frequency conductivity σ(ω), even in systems that are not perfectly integrable. We find, perturbatively, that σ(ω)∼ω^{-1/3} for translation-invariant static perturbations that conserve energy and σ(ω)∼|logω| for noisy perturbations. The (presumable) crossover to regular diffusion appears to lie beyond low-order perturbation theory. By contrast, integrability-breaking perturbations that break the non-Abelian symmetry yield conventional diffusion. Numerical evidence supports the distinction between these two classes of perturbations.

16.
Phys Rev Lett ; 125(7): 070601, 2020 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-32857584

RESUMEN

Finite-temperature spin transport in the quantum Heisenberg spin chain is known to be superdiffusive, and has been conjectured to lie in the Kardar-Parisi-Zhang (KPZ) universality class. Using a kinetic theory of transport, we compute the KPZ coupling strength for the Heisenberg chain as a function of temperature, directly from microscopics; the results agree well with density-matrix renormalization group simulations. We establish a rigorous quantum-classical correspondence between the "giant quasiparticles" that govern superdiffusion and solitons in the classical continuous Landau-Lifshitz ferromagnet. We conclude that KPZ universality has the same origin in classical and quantum integrable isotropic magnets: a finite-temperature gas of low-energy classical solitons.

17.
Nat Commun ; 11(1): 2225, 2020 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-32376859

RESUMEN

Quasiperiodic systems are aperiodic but deterministic, so their critical behavior differs from that of clean systems and disordered ones as well. Quasiperiodic criticality was previously understood only in the special limit where the couplings follow discrete quasiperiodic sequences. Here we consider generic quasiperiodic modulations; we find, remarkably, that for a wide class of spin chains, generic quasiperiodic modulations flow to discrete sequences under a real-space renormalization-group transformation. These discrete sequences are therefore fixed points of a functional renormalization group. This observation allows for an asymptotically exact treatment of the critical points. We use this approach to analyze the quasiperiodic Heisenberg, Ising, and Potts spin chains, as well as a phenomenological model for the quasiperiodic many-body localization transition.

18.
Phys Rev Lett ; 125(26): 265702, 2020 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-33449710

RESUMEN

Quantum critical points in quasiperiodic magnets can realize new universality classes, with critical properties distinct from those of clean or disordered systems. Here, we study quantum phase transitions separating ferromagnetic and paramagnetic phases in the quasiperiodic q-state Potts model in 2+1D. Using a controlled real-space renormalization group approach, we find that the critical behavior is largely independent of q, and is controlled by an infinite-quasiperiodicity fixed point. The correlation length exponent is found to be ν=1, saturating a modified version of the Harris-Luck criterion.

19.
Brain Pathol ; 30(1): 179-190, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31348837

RESUMEN

Pediatric diffuse midline gliomas are devastating diseases. Among them, diffuse midline gliomas H3K27M-mutant are associated with worse prognosis. However, recent studies have highlighted significant differences in clinical behavior and biological alterations within this specific subgroup. In this context, simple markers are needed to refine the prognosis of diffuse midline gliomas H3K27M-mutant and guide the clinical management of patients. The aims of this study were (i) to describe the molecular, immunohistochemical and, especially, chromosomal features of a cohort of diffuse midline gliomas and (ii) to focus on H3K27M-mutant tumors to identify new prognostic markers. Patients were retrospectively selected from 2001 to 2017. Tumor samples were analyzed by immunohistochemistry (including H3K27me3, EGFR, c-MET and p53), next-generation sequencing and comparative genomic hybridization array. Forty-nine patients were included in the study. The median age at diagnosis was 9 years, and the median overall survival (OS) was 9.4 months. H3F3A or HIST1H3B mutations were identified in 80% of the samples. Within the H3K27M-mutant tumors, PDGFRA amplification, loss of 17p and a complex chromosomal profile were significantly associated with worse survival. Three prognostic markers were identified in diffuse midline gliomas H3K27M-mutant: PDGFRA amplification, loss of 17p and a complex chromosomal profile. These markers are easy to detect in daily practice and should be considered to refine the prognosis of this entity.


Asunto(s)
Glioma/genética , Glioma/patología , Adolescente , Neoplasias Encefálicas/patología , Niño , Preescolar , Estudios de Cohortes , Hibridación Genómica Comparativa/métodos , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Histonas/genética , Humanos , Inmunohistoquímica/métodos , Lactante , Masculino , Mutación , Pronóstico , Estudios Retrospectivos , Adulto Joven
20.
Phys Rev Lett ; 123(17): 170603, 2019 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-31702243

RESUMEN

We construct an interacting integrable Floquet model featuring quasiparticle excitations with topologically nontrivial chiral dispersion. This model is a fully quantum generalization of an integrable classical cellular automaton. We write down and solve the Bethe equations for the generalized quantum model and show that these take on a particularly simple form that allows for an exact solution: essentially, the quasiparticles behave like interacting hard rods. The generalized thermodynamics and hydrodynamics of this model follow directly, providing an exact description of interacting chiral particles in the thermodynamic limit. Although the model is interacting, its unusually simple structure allows us to construct operators that spread with no butterfly effect; this construction does not seem possible in other interacting integrable systems. This model exemplifies a new class of exactly solvable, interacting quantum systems specific to the Floquet setting.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...