Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Nanotechnol ; 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39327514

RESUMEN

Hierarchical assemblies of ferroelectric nanodomains, so-called super-domains, can exhibit exotic morphologies that lead to distinct behaviours. Controlling these super-domains reliably is critical for realizing states with desired functional properties. Here we reveal the super-switching mechanism by using a biased atomic force microscopy tip, that is, the switching of the in-plane super-domains, of a model ferroelectric Pb0.6Sr0.4TiO3. We demonstrate that the writing process is dominated by a super-domain nucleation and stabilization process. A complex scanning-probe trajectory enables on-demand formation of intricate centre-divergent, centre-convergent and flux-closure polar structures. Correlative piezoresponse force microscopy and optical spectroscopy confirm the topological nature and tunability of the emergent structures. The precise and versatile nanolithography in a ferroic material and the stability of the generated structures, also validated by phase-field modelling, suggests potential for reliable multi-state nanodevice architectures and, thereby, an alternative route for the creation of tunable topological structures for applications in neuromorphic circuits.

2.
ACS Nano ; 18(36): 24898-24908, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39183496

RESUMEN

Scientific advancement is universally based on the dynamic interplay between theoretical insights, modeling, and experimental discoveries. However, this feedback loop is often slow, including delayed community interactions and the gradual integration of experimental data into theoretical frameworks. This challenge is particularly exacerbated in domains dealing with high-dimensional object spaces, such as molecules and complex microstructures. Hence, the integration of theory within automated and autonomous experimental setups, or theory in the loop-automated experiment, is emerging as a crucial objective for accelerating scientific research. The critical aspect is to use not only theory but also on-the-fly theory updates during the experiment. Here, we introduce a method for integrating theory into the loop through Bayesian conavigation of theoretical model space and experimentation. Our approach leverages the concurrent development of surrogate models for both simulation and experimental domains at the rates determined by latencies and costs of experiments and computation, alongside the adjustment of control parameters within theoretical models to minimize epistemic uncertainty over the experimental object spaces. This methodology facilitates the creation of digital twins of material structures, encompassing both the surrogate model of behavior that includes the correlative part and the theoretical model itself. While being demonstrated here within the context of functional responses in ferroelectric materials, our approach holds promise for broader applications, such as the exploration of optical properties in nanoclusters, microstructure-dependent properties in complex materials, and properties of molecular systems.

3.
Sci Adv ; 10(30): eadk5509, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39047104

RESUMEN

Epitaxial crystallization of complex oxides provides the means to create materials with precisely selected composition, strain, and orientation, thereby controlling their functionalities. Extending this control to nanoscale three-dimensional geometries can be accomplished via a three-dimensional analog of oxide solid-phase epitaxy, lateral epitaxial crystallization. The orientation of crystals within laterally crystallized SrTiO3 systematically changes from the orientation of the SrTiO3 substrate. This evolution occurs as a function of lateral crystallization distance, with a rate of approximately 50° µm-1. The mechanism of the rotation is consistent with a steady-state stress of tens of megapascal over a 100-nanometer scale region near the moving amorphous/crystalline interface arising from the amorphous-crystalline density difference. Second harmonic generation and piezoelectric force microscopy reveal that the laterally crystallized SrTiO3 is noncentrosymmetric and develops a switchable piezoelectric response at room temperature, illustrating the potential to use lateral crystallization to control the functionality of complex oxides.

4.
Small Methods ; : e2301763, 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38678523

RESUMEN

Autonomous systems that combine synthesis, characterization, and artificial intelligence can greatly accelerate the discovery and optimization of materials, however platforms for growth of macroscale thin films by physical vapor deposition techniques have lagged far behind others. Here this study demonstrates autonomous synthesis by pulsed laser deposition (PLD), a highly versatile synthesis technique, in the growth of ultrathin WSe2 films. By combing the automation of PLD synthesis and in situ diagnostic feedback with a high-throughput methodology, this study demonstrates a workflow and platform which uses Gaussian process regression and Bayesian optimization to autonomously identify growth regimes for WSe2 films based on Raman spectral criteria by efficiently sampling 0.25% of the chosen 4D parameter space. With throughputs at least 10x faster than traditional PLD workflows, this platform and workflow enables the accelerated discovery and autonomous optimization of the vast number of materials that can be synthesized by PLD.

5.
Small Methods ; : e2301740, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38639016

RESUMEN

Microscopy has been pivotal in improving the understanding of structure-function relationships at the nanoscale and is by now ubiquitous in most characterization labs. However, traditional microscopy operations are still limited largely by a human-centric click-and-go paradigm utilizing vendor-provided software, which limits the scope, utility, efficiency, effectiveness, and at times reproducibility of microscopy experiments. Here, a coupled software-hardware platform is developed that consists of a software package termed AEcroscopy (short for Automated Experiments in Microscopy), along with a field-programmable-gate-array device with LabView-built customized acquisition scripts, which overcome these limitations and provide the necessary abstractions toward full automation of microscopy platforms. The platform works across multiple vendor devices on scanning probe microscopes and electron microscopes. It enables customized scan trajectories, processing functions that can be triggered locally or remotely on processing servers, user-defined excitation waveforms, standardization of data models, and completely seamless operation through simple Python commands to enable a plethora of microscopy experiments to be performed in a reproducible, automated manner. This platform can be readily coupled with existing machine-learning libraries and simulations, to provide automated decision-making and active theory-experiment optimization to turn microscopes from characterization tools to instruments capable of autonomous model refinement and physics discovery.

6.
ACS Appl Mater Interfaces ; 16(7): 9144-9154, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38346142

RESUMEN

We demonstrate direct-write patterning of single and multilayer MoS2 via a focused electron beam-induced etching (FEBIE) process mediated with the XeF2 precursor. MoS2 etching is performed at various currents, areal doses, on different substrates, and characterized using scanning electron and atomic force microscopies as well as Raman and photoluminescence spectroscopies. Scanning transmission electron microscopy reveals a sub-40 nm etching resolution and the progression of point defects and lateral etching of the consequent unsaturated bonds. The results confirm that the electron beam-induced etching process is minimally invasive to the underlying material in comparison to ion beam techniques, which damage the subsurface material. Single-layer MoS2 field-effect transistors are fabricated, and device characteristics are compared for channels that are edited via the selected area etching process. The source-drain current at constant gate and source-drain voltage scale linearly with the edited channel width. Moreover, the mobility of the narrowest channel width decreases, suggesting that backscattered and secondary electrons collaterally affect the periphery of the removed area. Focused electron beam doses on single-layer transistors below the etching threshold were also explored as a means to modify/thin the channel layer. The FEBIE exposures showed demonstrative effects via the transistor transfer characteristics, photoluminescence spectroscopy, and Raman spectroscopy. While strategies to minimize backscattered and secondary electron interactions outside of the scanned regions require further investigation, here, we show that FEBIE is a viable approach for selective nanoscale editing of MoS2 devices.

7.
Patterns (N Y) ; 4(11): 100858, 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-38035198

RESUMEN

The broad adoption of machine learning (ML)-based autonomous experiments (AEs) in material characterization and synthesis requires strategies development for understanding and intervention in the experimental workflow. Here, we introduce and realize a post-experimental analysis strategy for deep kernel learning-based autonomous scanning probe microscopy. This approach yields real-time and post-experimental indicators for the progression of an active learning process interacting with an experimental system. We further illustrate how this approach can be applied to human-in-the-loop AEs, where human operators make high-level decisions at high latencies setting the policies for AEs, and the ML algorithm performs low-level, fast decisions. The proposed approach is universal and can be extended to other techniques and applications such as combinatorial library analysis.

8.
Nat Commun ; 14(1): 7196, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37938577

RESUMEN

Unraveling local dynamic charge processes is vital for progress in diverse fields, from microelectronics to energy storage. This relies on the ability to map charge carrier motion across multiple length- and timescales and understanding how these processes interact with the inherent material heterogeneities. Towards addressing this challenge, we introduce high-speed sparse scanning Kelvin probe force microscopy, which combines sparse scanning and image reconstruction. This approach is shown to enable sub-second imaging (>3 frames per second) of nanoscale charge dynamics, representing several orders of magnitude improvement over traditional Kelvin probe force microscopy imaging rates. Bridging this improved spatiotemporal resolution with macroscale device measurements, we successfully visualize electrochemically mediated diffusion of mobile surface ions on a LaAlO3/SrTiO3 planar device. Such processes are known to impact band-alignment and charge-transfer dynamics at these heterointerfaces. Furthermore, we monitor the diffusion of oxygen vacancies at the single grain level in polycrystalline TiO2. Through temperature-dependent measurements, we identify a charge diffusion activation energy of 0.18 eV, in good agreement with previously reported values and confirmed by DFT calculations. Together, these findings highlight the effectiveness and versatility of our method in understanding ionic charge carrier motion in microelectronics or nanoscale material systems.

9.
14.
J Phys Chem Lett ; 14(13): 3352-3359, 2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-36994975

RESUMEN

Electronic transport and hysteresis in metal halide perovskites (MHPs) are key to the applications in photovoltaics, light emitting devices, and light and chemical sensors. These phenomena are strongly affected by the materials microstructure including grain boundaries, ferroic domain walls, and secondary phase inclusions. Here, we demonstrate an active machine learning framework for "driving" an automated scanning probe microscope (SPM) to discover the microstructures responsible for specific aspects of transport behavior in MHPs. In our setup, the microscope can discover the microstructural elements that maximize the onset of conduction, hysteresis, or any other characteristic that can be derived from a set of current-voltage spectra. This approach opens new opportunities for exploring the origins of materials functionality in complex materials by SPM and can be integrated with other characterization techniques either before (prior knowledge) or after (identification of locations of interest for detail studies) functional probing.

15.
Patterns (N Y) ; 4(3): 100704, 2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36960442

RESUMEN

Using hypothesis-learning-driven automated scanning probe microscopy (SPM), we explore the bias-induced transformations that underpin the functionality of broad classes of devices and materials from batteries and memristors to ferroelectrics and antiferroelectrics. Optimization and design of these materials require probing the mechanisms of these transformations on the nanometer scale as a function of a broad range of control parameters, leading to experimentally intractable scenarios. Meanwhile, often these behaviors are understood within potentially competing theoretical hypotheses. Here, we develop a hypothesis list covering possible limiting scenarios for domain growth in ferroelectric materials, including thermodynamic, domain-wall pinning, and screening limited. The hypothesis-driven SPM autonomously identifies the mechanisms of bias-induced domain switching, and the results indicate that domain growth is ruled by kinetic control. We note that the hypothesis learning can be broadly used in other automated experiment settings.

16.
Nat Commun ; 14(1): 1754, 2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-36990982

RESUMEN

In exsolution, nanoparticles form by emerging from oxide hosts by application of redox driving forces, leading to transformative advances in stability, activity, and efficiency over deposition techniques, and resulting in a wide range of new opportunities for catalytic, energy and net-zero-related technologies. However, the mechanism of exsolved nanoparticle nucleation and perovskite structural evolution, has, to date, remained unclear. Herein, we shed light on this elusive process by following in real time Ir nanoparticle emergence from a SrTiO3 host oxide lattice, using in situ high-resolution electron microscopy in combination with computational simulations and machine learning analytics. We show that nucleation occurs via atom clustering, in tandem with host evolution, revealing the participation of surface defects and host lattice restructuring in trapping Ir atoms to initiate nanoparticle formation and growth. These insights provide a theoretical platform and practical recommendations to further the development of highly functional and broadly applicable exsolvable materials.

17.
ACS Appl Mater Interfaces ; 15(1): 2329-2340, 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36577139

RESUMEN

Classic design of experiment relies on a time-intensive workflow that requires planning, data interpretation, and hypothesis building by experienced researchers. Here, we describe an integrated, machine-intelligent experimental system which enables simultaneous dynamic tests of electrical, optical, gravimetric, and viscoelastic properties of materials under a programmable dynamic environment. Specially designed software controls the experiment and performs on-the-fly extensive data analysis and dynamic modeling, real-time iterative feedback for dynamic control of experimental conditions, and rapid visualization of experimental results. The system operates with minimal human intervention and enables time-efficient characterization of complex dynamic multifunctional environmental responses of materials with simultaneous data processing and analytics. The system provides a viable platform for artificial intelligence (AI)-centered material characterization, which, when coupled with an AI-controlled synthesis system, could lead to accelerated discovery of multifunctional materials.

18.
Small ; 18(48): e2204130, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36253123

RESUMEN

An automated experiment in multimodal imaging to probe structural, chemical, and functional behaviors in complex materials and elucidate the dominant physical mechanisms that control device function is developed and implemented. Here, the emergence of non-linear electromechanical responses in piezoresponse force microscopy (PFM) is explored. Non-linear responses in PFM can originate from multiple mechanisms, including intrinsic material responses often controlled by domain structure, surface topography that affects the mechanical phenomena at the tip-surface junction, and the presence of surface contaminants. Using an automated experiment to probe the origins of non-linear behavior in ferroelectric lead titanate (PTO) and ferroelectric Al0.93 B0.07 N films, it is found that PTO shows asymmetric nonlinear behavior across a/c domain walls and a broadened high nonlinear response region around c/c domain walls. In contrast, for Al0.93 B0.07 N, well-poled regions show high linear piezoelectric responses, when paired with low non-linear responses regions that are multidomain show low linear responses and high nonlinear responses. It is shown that formulating dissimilar exploration strategies in deep kernel learning as alternative hypotheses allows for establishing the preponderant physical mechanisms behind the non-linear behaviors, suggesting that automated experiments can potentially discern between competing physical mechanisms. This technique can also be extended to electron, probe, and chemical imaging.

19.
ACS Nano ; 16(9): 13492-13512, 2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36066996

RESUMEN

Recent progress in machine learning methods and the emerging availability of programmable interfaces for scanning probe microscopes (SPMs) have propelled automated and autonomous microscopies to the forefront of attention of the scientific community. However, enabling automated microscopy requires the development of task-specific machine learning methods, understanding the interplay between physics discovery and machine learning, and fully defined discovery workflows. This, in turn, requires balancing the physical intuition and prior knowledge of the domain scientist with rewards that define experimental goals and machine learning algorithms that can translate these to specific experimental protocols. Here, we discuss the basic principles of Bayesian active learning and illustrate its applications for SPM. We progress from the Gaussian process as a simple data-driven method and Bayesian inference for physical models as an extension of physics-based functional fits to more complex deep kernel learning methods, structured Gaussian processes, and hypothesis learning. These frameworks allow for the use of prior data, the discovery of specific functionalities as encoded in spectral data, and exploration of physical laws manifesting during the experiment. The discussed framework can be universally applied to all techniques combining imaging and spectroscopy, SPM methods, nanoindentation, electron microscopy and spectroscopy, and chemical imaging methods and can be particularly impactful for destructive or irreversible measurements.

20.
Adv Sci (Weinh) ; 9(29): e2201530, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36031394

RESUMEN

Ferroelectrics are being increasingly called upon for electronic devices in extreme environments. Device performance and energy efficiency is highly correlated to clock frequency, operational voltage, and resistive loss. To increase performance it is common to engineer ferroelectric domain structure with highly-correlated electrical and elastic coupling that elicit fast and efficient collective switching. Designing domain structures with advantageous properties is difficult because the mechanisms involved in collective switching are poorly understood and difficult to investigate. Collective switching is a hierarchical process where the nano- and mesoscale responses control the macroscopic properties. Using chemical solution synthesis, epitaxially nearly-relaxed (100) BaTiO3 films are synthesized. Thermal strain induces a strongly-correlated domain structure with alternating domains of polarization along the [010] and [001] in-plane axes and 90° domain walls along the [011] or [01 1 ¯ $\bar{1}$ ] directions. Simultaneous capacitance-voltage measurements and band-excitation piezoresponse force microscopy revealed strong collective switching behavior. Using a deep convolutional autoencoder, hierarchical switching is automatically tracked and the switching pathway is identified. The collective switching velocities are calculated to be ≈500 cm s-1 at 5 V (7 kV cm-1 ), orders-of-magnitude faster than expected. These combinations of properties are promising for high-speed tunable dielectrics and low-voltage ferroelectric memories and logic.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...