Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
EMBO J ; 43(2): 250-276, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38177505

RESUMEN

Expansion mutations in polyalanine stretches are associated with a growing number of diseases sharing a high degree of genotypic and phenotypic commonality. These similarities prompted us to query the normal function of physiological polyalanine stretches and to investigate whether a common molecular mechanism is involved in these diseases. Here, we show that UBA6, an E1 ubiquitin-activating enzyme, recognizes a polyalanine stretch within its cognate E2 ubiquitin-conjugating enzyme USE1. Aberrations in this polyalanine stretch reduce ubiquitin transfer to USE1 and, subsequently, polyubiquitination and degradation of its target, the ubiquitin ligase E6AP. Furthermore, we identify competition for the UBA6-USE1 interaction by various proteins with polyalanine expansion mutations in the disease state. The deleterious interactions of expanded polyalanine tract proteins with UBA6 in mouse primary neurons alter the levels and ubiquitination-dependent degradation of E6AP, which in turn affects the levels of the synaptic protein Arc. These effects are also observed in induced pluripotent stem cell-derived autonomic neurons from patients with polyalanine expansion mutations, where UBA6 overexpression increases neuronal resilience to cell death. Our results suggest a shared mechanism for such mutations that may contribute to the congenital malformations seen in polyalanine tract diseases.


Asunto(s)
Péptidos , Enzimas Activadoras de Ubiquitina , Ubiquitina , Humanos , Animales , Ratones , Ubiquitinación , Ubiquitina/genética , Ubiquitina/metabolismo , Enzimas Activadoras de Ubiquitina/genética , Enzimas Activadoras de Ubiquitina/metabolismo , Mutación
2.
Free Radic Biol Med ; 213: 164-173, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38246514

RESUMEN

Peripheral autonomic nervous system (P-ANS) dysfunction is a critical non-motor phenotype of Parkinson's disease (PD). The majority of PD cases are sporadic and lack identified PD-associated genes involved. Epidemiological and animal model studies suggest an association with pesticides and other environmental toxins. However, the cellular mechanisms underlying toxin induced P-ANS dysfunctions remain unclear. Here, we mapped the global transcriptome changes in human induced pluripotent stem cell (iPSC) derived P-ANS sympathetic neurons during inhibition of the mitochondrial respiratory chain by the PD-related pesticide, rotenone. We revealed distinct transcriptome profiles between acute and chronic exposure to rotenone. In the acute stage, there was a down regulation of specific cation channel genes, known to mediate electrophysiological activity, while in the chronic stage, the human P-ANS neurons exhibited dysregulation of anti-apoptotic and Golgi apparatus-related pathways. Moreover, we identified the sodium voltage-gated channel subunit SCN3A/Nav1.3 as a potential biomarker in human P-ANS neurons associated with PD. Our analysis of the rotenone-altered coding and non-coding transcriptome of human P-ANS neurons may thus provide insight into the pathological signaling events in the sympathetic neurons during PD progression.


Asunto(s)
Células Madre Pluripotentes Inducidas , Enfermedad de Parkinson , Animales , Humanos , Enfermedad de Parkinson/metabolismo , Rotenona/toxicidad , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Neuronas/metabolismo , Fenotipo
3.
Int J Mol Sci ; 23(24)2022 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-36555735

RESUMEN

Pleckstrin Homology And RUN Domain Containing M2 (PLEKHM2) [delAG] mutation causes dilated cardiomyopathy with left ventricular non-compaction (DCM-LVNC), resulting in a premature death of PLEKHM2[delAG] individuals due to heart failure. PLEKHM2 is a factor involved in autophagy, a master regulator of cellular homeostasis, decomposing pathogens, proteins and other cellular components. Autophagy is mainly carried out by the lysosome, containing degradation enzymes, and by the autophagosome, which engulfs substances marked for decomposition. PLEKHM2 promotes lysosomal movement toward the cell periphery. Autophagic dysregulation is associated with neurodegenerative diseases' pathogenesis. Thus, modulation of autophagy holds considerable potential as a therapeutic target for such disorders. We hypothesized that PLEKHM2 is involved in neuronal development and function, and that mutated PLEKHM2 (PLEKHM2[delAG]) neurons will present impaired functions. Here, we studied PLEKHM2-related abnormalities in induced pluripotent stem cell (iPSC)-derived motor neurons (iMNs) as a neuronal model. PLEKHM2[delAG] iMN cultures had healthy control-like differentiation potential but exhibited reduced autophagic activity. Electrophysiological measurements revealed that PLEKHM2[delAG] iMN cultures displayed delayed functional maturation and more frequent and unsynchronized activity. This was associated with increased size and a more perinuclear lysosome cellular distribution. Thus, our results suggest that PLEKHM2 is involved in the functional development of neurons through the regulation of autophagic flux.


Asunto(s)
Células Madre Pluripotentes Inducidas , Humanos , Autofagia/genética , Autofagosomas/metabolismo , Lisosomas/metabolismo , Neuronas Motoras
4.
Stem Cell Reports ; 17(9): 2050-2063, 2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-35961311

RESUMEN

The blood-brain barrier (BBB) selectively regulates the entry of molecules into the central nervous system (CNS). A crosstalk between brain microvascular endothelial cells (BMECs) and resident CNS cells promotes the acquisition of functional tight junctions (TJs). Retinoic acid (RA), a key signaling molecule during embryonic development, is used to enhance in vitro BBB models' functional barrier properties. However, its physiological relevance and affected pathways are not fully understood. P450 oxidoreductase (POR) regulates the enzymatic activity of microsomal cytochromes. POR-deficient (PORD) patients display impaired steroid homeostasis and cognitive disabilities. Here, we used both patient-specific POR-deficient and CRISPR-Cas9-mediated POR-depleted induced pluripotent stem cell (iPSC)-derived BMECs (iBMECs) to study the role of POR in the acquisition of functional barrier properties. We demonstrate that POR regulates cellular RA homeostasis and that POR deficiency leads to the accumulation of RA within iBMECs, resulting in the impaired acquisition of TJs and, consequently, to dysfunctional development of barrier properties.


Asunto(s)
Barrera Hematoencefálica , Células Madre Pluripotentes Inducidas , Barrera Hematoencefálica/metabolismo , Células Endoteliales/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Oxidorreductasas/metabolismo , Tretinoina/metabolismo , Tretinoina/farmacología
5.
Neuron ; 110(8): 1432-1432.e1, 2022 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-35447099
6.
Thyroid ; 32(7): 849-859, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35350867

RESUMEN

Background: Allan-Herndon-Dudley syndrome (AHDS) is a severe psychomotor disability disorder that also manifests characteristic abnormal thyroid hormone (TH) levels. AHDS is caused by inactivating mutations in monocarboxylate transporter 8 (MCT8), a specific TH plasma membrane transporter widely expressed in the central nervous system (CNS). MCT8 mutations cause impaired transport of TH across brain barriers, leading to insufficient neural TH supply. There is currently no successful therapy for the neurological symptoms. Earlier work has shown that intravenous (IV), but not intracerebroventricular adeno-associated virus serotype 9 (AAV9) -based gene therapy given to newborn Mct8 knockout (Mct8-/y) male mice increased triiodothyronine (T3) brain content and partially rescued TH-dependent gene expression, suggesting a promising approach to treat this neurological disorder. Methods: The potential of IV delivery of AAV9 carrying human MCT8 was tested in the well-established Mct8-/y/Organic anion-transporting polypeptide 1c1 (Oatp1c1)-/ - double knockout (dKO) mouse model of AHDS, which, unlike Mct8-/y mice, displays both neurological and TH phenotype. Further, as the condition is usually diagnosed during childhood, treatment was given intravenously to P30 mice and psychomotor tests were carried out blindly at P120-P140 after which tissues were collected and analyzed. Results: Systemic IV delivery of AAV9-MCT8 at a juvenile stage led to improved locomotor and cognitive functions at P120-P140, which was accompanied by a near normalization of T3 content and an increased response of positively regulated TH-dependent gene expression in different brain regions examined (thalamus, hippocampus, and parietal cortex). The effects on serum TH concentrations and peripheral tissues were less pronounced, showing only improvement in the serum T3/reverse T3 (rT3) ratio and in liver deiodinase 1 expression. Conclusion: IV administration of AAV9, carrying the human MCT8, to juvenile dKO mice manifesting AHDS has long-term beneficial effects, predominantly on the CNS. This preclinical study indicates that this gene therapy has the potential to ameliorate the devastating neurological symptoms in patients with AHDS.


Asunto(s)
Discapacidad Intelectual Ligada al Cromosoma X , Transportadores de Ácidos Monocarboxílicos , Simportadores , Animales , Dependovirus/genética , Dependovirus/metabolismo , Modelos Animales de Enfermedad , Masculino , Discapacidad Intelectual Ligada al Cromosoma X/genética , Discapacidad Intelectual Ligada al Cromosoma X/terapia , Ratones , Transportadores de Ácidos Monocarboxílicos/administración & dosificación , Transportadores de Ácidos Monocarboxílicos/deficiencia , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Hipotonía Muscular , Atrofia Muscular , Mutación , Serogrupo , Simportadores/administración & dosificación , Simportadores/deficiencia , Simportadores/genética , Simportadores/metabolismo , Triyodotironina/metabolismo
7.
Thyroid ; 32(7): 860-870, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35357974

RESUMEN

Background: Monocarboxylate transporter 8 (MCT8) deficiency is a rare genetic disease leading to a severe developmental delay due to a lack of thyroid hormones (THs) during critical stages of human brain development. Some MCT8-deficient patients are not as severely affected as others. Previously, we hypothesized that these patients' mutations do not affect the functionality but destabilize the MCT8 protein, leading to a diminished number of functional MCT8 molecules at the cell surface. Methods: We have already demonstrated that the chemical chaperone sodium phenylbutyrate (NaPB) rescues the function of these mutants by stabilizing their protein expression in an overexpressing cell system. Here, we expanded our previous work and used iPSC (induced pluripotent stem cell)-derived brain microvascular endothelial-like cells (iBMECs) as a physiologically relevant cell model of human origin to test for NaPB responsiveness. The effects on mutant MCT8 expression and function were tested by Western blotting and radioactive uptake assays. Results: We found that NaPB rescues decreased mutant MCT8 expression and restores transport function in iBMECs carrying patient's mutation MCT8-P321L. Further, we identified MCT10 as an alternative TH transporter in iBMECs that contributes to triiodothyronine uptake, the biological active TH. Our results indicate an upregulation of MCT10 after NaPB treatment. In addition, we detected an increase in thyroxine (T4) uptake after NaPB treatment that was not mediated by rescued MCT8 but an unidentified T4 transporter. Conclusions: We demonstrate that NaPB is suitable to stabilize a pathogenic missense mutation in a human-derived cell model. Further, it activates TH transport independent of MCT8. Both options fuel future studies to investigate repurposing the Food and Drug Administration-approved drug NaPB in selected cases of MCT8 deficiency.


Asunto(s)
Transportadores de Ácidos Monocarboxílicos , Simportadores , Transporte Biológico , Encéfalo/metabolismo , Humanos , Discapacidad Intelectual Ligada al Cromosoma X , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Hipotonía Muscular , Atrofia Muscular , Fenilbutiratos , Simportadores/genética , Simportadores/metabolismo , Hormonas Tiroideas/metabolismo , Triyodotironina/metabolismo , Triyodotironina/farmacología
8.
Lancet Neurol ; 20(10): 868-876, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34536407

RESUMEN

Patients with Parkinson's disease present with signs and symptoms of dysregulation of the peripheral autonomic nervous system that can even precede motor deficits. This dysregulation might reflect early pathology and therefore could be targeted for the development of prodromal or diagnostic biomarkers. Only a few objective clinical tests assess disease progression and are used to evaluate the entire spectrum of autonomic dysregulation in patients with Parkinson's disease. However, results from epidemiological studies and findings from new animal models suggest that the dysfunctional autonomic nervous system is a probable route by which Parkinson's disease pathology can spread both to and from the CNS. The autonomic innervation of the gut, heart, and skin is affected by α-synuclein pathology in the early stages of the disease and might initiate α-synuclein spread via the autonomic connectome to the CNS. The development of easy-to-use and reliable clinical tests of autonomic nervous system function seems crucial for early diagnosis, and for developing strategies to stop or prevent neurodegeneration in Parkinson's disease.


Asunto(s)
Enfermedad de Parkinson , Animales , Sistema Nervioso Autónomo/metabolismo , Encéfalo/metabolismo , Corazón , Humanos , alfa-Sinucleína/metabolismo
9.
Stem Cell Res ; 55: 102495, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34419746

RESUMEN

Familial Dysautonomia (FD) is an autosomal recessive congenital neuropathy affecting the development and function of the peripheral nervous system. FD causing gene is IKBKAP, encoding IkappaB kinase complex-associated protein also named elongator complex like protein 1 (IKAP/ELP1). The most common mutation (IVS20 + 6 T > C) causes an exon 20 skipping, leading to a truncated protein. We report the generation of two induced pluripotent stem cell lines from an FD patient with a homozygous mutation in ELP1 and his heterozygous healthy family relative. Both lines highly express pluripotency markers, can differentiate into the three germ layers, retain the disease-causing mutation and display normal karyotypes.


Asunto(s)
Disautonomía Familiar , Células Madre Pluripotentes Inducidas , Proteínas Portadoras/genética , Disautonomía Familiar/genética , Heterocigoto , Humanos , Mutación
10.
Glia ; 69(9): 2146-2159, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33956384

RESUMEN

Inactivating mutations in the thyroid hormone (TH) transporter monocarboxylate transporter 8 (MCT8) causes a rare and debilitating form of X-linked psychomotor disability known as Allan Herndon Dudley syndrome (AHDS). One of the most prominent pathophysiological symptoms of MCT8-deficiency is hypomyelination. Here, patient-derived induced pluripotent stem cells (iPSCs) were used to study the role of MCT8 and TH on the maturation of oligodendrocytes. Interestingly, neither MCT8 mutations nor reduced TH affected the in vitro differentiation of control or MCT8-deficient iPSCs into oligodendrocytes. To assess whether patient-derived iPSC-derived oligodendrocyte progenitor cells (iOPCs) could provide myelinating oligodendrocytes in vivo, cells were transplanted into the shiverer mouse corpus callosum where they survived, migrated, and matured into myelinating oligodendrocytes, though the myelination efficiency was reduced compared with control cells. When MCT8-deficient and healthy control iOPCs were transplanted into a novel hypothyroid immunodeficient triple knockout mouse (tKO, mct8-/- ; oatp1c1-/- ; rag2-/- ), they failed to provide behavioral recovery and did not mature into oligodendrocytes in the hypothyroid corpus callosum, demonstrating the critical role of TH transport across brain barriers in oligodendrocyte maturation. We conclude that MCT8 plays a cell autonomous role in oligodendrocyte maturation and that functional TH transport into the central nervous system will be required for developing an effective treatment for MCT8-deficient patients.


Asunto(s)
Células Precursoras de Oligodendrocitos , Simportadores , Animales , Encéfalo/metabolismo , Membrana Celular/metabolismo , Humanos , Ratones , Transportadores de Ácidos Monocarboxílicos/metabolismo , Células Precursoras de Oligodendrocitos/metabolismo , Simportadores/genética , Simportadores/metabolismo , Hormonas Tiroideas/genética , Hormonas Tiroideas/metabolismo
11.
Mol Psychiatry ; 26(11): 6550-6561, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33967268

RESUMEN

Activity-dependent neuroprotective protein (ADNP) is essential for brain formation and function. As such, de novo mutations in ADNP lead to the autistic ADNP syndrome and somatic ADNP mutations may drive Alzheimer's disease (AD) tauopathy. Sirtuin 1 (SIRT1) is positively associated with aging, the major risk for AD. Here, we revealed two key interaction sites for ADNP and SIRT1. One, at the microtubule end-binding protein (EB1 and EB3) Tau level, with EB1/EB3 serving as amplifiers for microtubule dynamics, synapse formation, axonal transport, and protection against tauopathy. Two, on the DNA/chromatin site, with yin yang 1, histone deacetylase 2, and ADNP, sharing a DNA binding motif and regulating SIRT1, ADNP, and EB1 (MAPRE1). This interaction was linked to sex- and age-dependent altered histone modification, associated with ADNP/SIRT1/WD repeat-containing protein 5, which mediates the assembly of histone modification complexes. Single-cell RNA and protein expression analyses as well as gene expression correlations placed SIRT1-ADNP and either MAPRE1 (EB1), MAPRE3 (EB3), or both in the same mouse and human cell; however, while MAPRE1 seemed to be similarly regulated to ADNP and SIRT1, MAPRE3 seemed to deviate. Finally, we demonstrated an extremely tight correlation for the gene transcripts described above, including related gene products. This correlation was specifically abolished in affected postmortem AD and Parkinson's disease brain select areas compared to matched controls, while being maintained in blood samples. Thus, we identified an ADNP-SIRT1 complex that may serve as a new target for the understanding of brain degeneration.


Asunto(s)
Histonas , Sirtuina 1 , Animales , Histonas/metabolismo , Proteínas de Homeodominio/metabolismo , Humanos , Metilación , Ratones , Microtúbulos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Sirtuina 1/genética , Sirtuina 1/metabolismo
12.
Stem Cell Res ; 51: 102178, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33482465

RESUMEN

The GLUN2D subunit of the N-methylD-aspartate receptor (NMDAR) is encoded by the GRIN2D gene. Mutations in GRIN2D have been associated with neurodevelopmental and epileptic encephalopathies. Access to patient samples harboring mutations in GRIN2D can contribute to understanding the role of NMDAR in neuronal development and function. We report the generation of induced pluripotent stem cell (iPSC) lines from a GRIN2D-developmental and epileptic encephalopathy (DEE) patient, carrying a de novo c.1999G>A heterozygous pathogenic variant, and his healthy parent. Generated lines highly expressed pluripotency markers, spontaneously differentiated into the three germ layers, retained the deficiency-causing mutation, and displayed normal karyotypes.


Asunto(s)
Encefalopatías , Células Madre Pluripotentes Inducidas , Diferenciación Celular , Heterocigoto , Humanos , Mutación , Receptores de N-Metil-D-Aspartato/genética
13.
Stem Cell Res ; 48: 101975, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32905996

RESUMEN

p450 oxidoreductase (POR) cytochromes are enzymes involved in the metabolism of steroids and sex hormones, in which POR acts as an electron donor. Inactivating mutations in the POR gene cause diverse deficiencies. Access to patient samples carrying these POR mutations can contribute to the understanding of metabolic and developmental processes. We report the generation of three iPSC lines from two POR-deficient patients carrying a rare G539R homozygous mutation, and one healthy heterozygous family relative. All generated lines highly expressed pluripotency markers, spontaneously differentiated into three germ layers, retained the deficiency causing mutation and displayed normal karyotypes.


Asunto(s)
Células Madre Pluripotentes Inducidas , Heterocigoto , Homocigoto , Humanos , Mutación/genética , NADPH-Ferrihemoproteína Reductasa/genética
14.
Stem Cell Res ; 48: 101955, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32822965

RESUMEN

Congenital central hypoventilation syndrome (CCHS) is a rare life-threatening condition affecting the autonomic nervous system that usually presents shortly after birth as hypoventilation or central apnea during sleep. In the majority of cases, heterozygous polyalanine expansion mutations within the third exon of the paired-like homeobox 2B (PHOX2B) gene underlie CCHS. Here, we report the generation of two induced pluripotent stem cell (iPSC) lines from two identical twins with a heterozygous PHOX2B expansion mutation (+5 alanine residues). Both generated lines highly express pluripotency markers, can differentiate into the three germ layers, retain the disease-causing mutation and display normal karyotypes.


Asunto(s)
Proteínas de Homeodominio , Células Madre Pluripotentes Inducidas , Factores de Transcripción , Línea Celular , Genes Homeobox , Proteínas de Homeodominio/genética , Humanos , Mutación , Péptidos , Gemelos Monocigóticos
15.
J Vis Exp ; (157)2020 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-32176199

RESUMEN

The blood brain barrier (BBB) is formed by neurovascular units (NVUs) that shield the central nervous system (CNS) from a range of factors found in the blood that can disrupt delicate brain function. As such, the BBB is a major obstacle to the delivery of therapeutics to the CNS. Accumulating evidence suggests that the BBB plays a key role in the onset and progression of neurological diseases. Thus, there is a tremendous need for a BBB model that can predict penetration of CNS-targeted drugs as well as elucidate the BBB's role in health and disease. We have recently combined organ-on-chip and induced pluripotent stem cell (iPSC) technologies to generate a BBB chip fully personalized to humans. This novel platform displays cellular, molecular, and physiological properties that are suitable for the prediction of drug and molecule transport across the human BBB. Furthermore, using patient-specific BBB chips, we have generated models of neurological disease and demonstrated the potential for personalized predictive medicine applications. Provided here is a detailed protocol demonstrating how to generate iPSC-derived BBB chips, beginning with differentiation of iPSC-derived brain microvascular endothelial cells (iBMECs) and resulting in mixed neural cultures containing neural progenitors, differentiated neurons, and astrocytes. Also described is a procedure for seeding cells into the organ chip and culturing of the BBB chips under controlled laminar flow. Lastly, detailed descriptions of BBB chip analyses are provided, including paracellular permeability assays for assessing drug and molecule permeability as well as immunocytochemical methods for determining the composition of cell types within the chip.


Asunto(s)
Barrera Hematoencefálica , Células Madre Pluripotentes Inducidas , Astrocitos/citología , Transporte Biológico , Diferenciación Celular , Células Endoteliales/citología , Humanos , Dispositivos Laboratorio en un Chip , Modelos Neurológicos , Técnicas de Cultivo de Órganos
16.
Cell Stem Cell ; 24(6): 995-1005.e6, 2019 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-31173718

RESUMEN

The blood-brain barrier (BBB) tightly regulates the entry of solutes from blood into the brain and is disrupted in several neurological diseases. Using Organ-Chip technology, we created an entirely human BBB-Chip with induced pluripotent stem cell (iPSC)-derived brain microvascular endothelial-like cells (iBMECs), astrocytes, and neurons. The iBMECs formed a tight monolayer that expressed markers specific to brain vasculature. The BBB-Chip exhibited physiologically relevant transendothelial electrical resistance and accurately predicted blood-to-brain permeability of pharmacologics. Upon perfusing the vascular lumen with whole blood, the microengineered capillary wall protected neural cells from plasma-induced toxicity. Patient-derived iPSCs from individuals with neurological diseases predicted disease-specific lack of transporters and disruption of barrier integrity. By combining Organ-Chip technology and human iPSC-derived tissue, we have created a neurovascular unit that recapitulates complex BBB functions, provides a platform for modeling inheritable neurological disorders, and advances drug screening, as well as personalized medicine.


Asunto(s)
Astrocitos/fisiología , Barrera Hematoencefálica/fisiología , Encéfalo/fisiología , Endotelio Vascular/fisiología , Células Madre Pluripotentes Inducidas/fisiología , Microfluídica/métodos , Neuronas/fisiología , Bioingeniería , Barrera Hematoencefálica/patología , Permeabilidad Capilar , Diferenciación Celular , Células Cultivadas , Evaluación Preclínica de Medicamentos , Humanos , Técnicas de Cultivo de Órganos , Medicina de Precisión
17.
Cell Rep ; 19(7): 1365-1377, 2017 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-28514657

RESUMEN

Brain microvascular endothelial cells (BMECs) are an essential component of the blood-brain barrier (BBB) that shields the brain against toxins and immune cells. While BBB dysfunction exists in neurological disorders, including Huntington's disease (HD), it is not known if BMECs themselves are functionally compromised to promote BBB dysfunction. Further, the underlying mechanisms of BBB dysfunction remain elusive given limitations with mouse models and post-mortem tissue to identify primary deficits. We undertook a transcriptome and functional analysis of human induced pluripotent stem cell (iPSC)-derived BMECs (iBMEC) from HD patients or unaffected controls. We demonstrate that HD iBMECs have intrinsic abnormalities in angiogenesis and barrier properties, as well as in signaling pathways governing these processes. Thus, our findings provide an iPSC-derived BBB model for a neurodegenerative disease and demonstrate autonomous neurovascular deficits that may underlie HD pathology with implications for therapeutics and drug delivery.


Asunto(s)
Barrera Hematoencefálica/patología , Células Endoteliales/patología , Enfermedad de Huntington/patología , Células Madre Pluripotentes Inducidas/patología , Microvasos/patología , Neovascularización Fisiológica , Vía de Señalización Wnt , Redes Reguladoras de Genes , Humanos , Enfermedad de Huntington/genética , Células Madre Pluripotentes Inducidas/metabolismo , Transcriptoma/genética , Transcitosis , beta Catenina/metabolismo
18.
Cell Stem Cell ; 20(6): 831-843.e5, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28526555

RESUMEN

Inactivating mutations in the thyroid hormone (TH) transporter Monocarboxylate transporter 8 (MCT8) cause severe psychomotor retardation in children. Animal models do not reflect the biology of the human disease. Using patient-specific induced pluripotent stem cells (iPSCs), we generated MCT8-deficient neural cells that showed normal TH-dependent neuronal properties and maturation. However, the blood-brain barrier (BBB) controls TH entry into the brain, and reduced TH availability to neural cells could instead underlie the diseased phenotype. To test potential BBB involvement, we generated an iPSC-based BBB model of MCT8 deficiency, and we found that MCT8 was necessary for polarized influx of the active form of TH across the BBB. We also found that a candidate drug did not appreciably cross the mutant BBB. Our results therefore clarify the underlying physiological basis of this disorder, and they suggest that circumventing the diseased BBB to deliver active TH to the brain could be a viable therapeutic strategy.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Transportadores de Ácidos Monocarboxílicos/deficiencia , Neuronas/metabolismo , Trastornos Psicomotores/metabolismo , Barrera Hematoencefálica/patología , Línea Celular , Femenino , Humanos , Células Madre Pluripotentes Inducidas/patología , Masculino , Neuronas/patología , Trastornos Psicomotores/genética , Trastornos Psicomotores/patología , Simportadores
19.
J Neurochem ; 140(6): 874-888, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27935037

RESUMEN

The blood-brain barrier (BBB) is critical in maintaining a physical and metabolic barrier between the blood and the brain. The BBB consists of brain microvascular endothelial cells (BMECs) that line the brain vasculature and combine with astrocytes, neurons and pericytes to form the neurovascular unit. We hypothesized that astrocytes and neurons generated from human-induced pluripotent stem cells (iPSCs) could induce BBB phenotypes in iPSC-derived BMECs, creating a robust multicellular human BBB model. To this end, iPSCs were used to form neural progenitor-like EZ-spheres, which were in turn differentiated to neurons and astrocytes, enabling facile neural cell generation. The iPSC-derived astrocytes and neurons induced barrier tightening in primary rat BMECs indicating their BBB inductive capacity. When co-cultured with human iPSC-derived BMECs, the iPSC-derived neurons and astrocytes significantly elevated trans-endothelial electrical resistance, reduced passive permeability, and improved tight junction continuity in the BMEC cell population, while p-glycoprotein efflux transporter activity was unchanged. A physiologically relevant neural cell mixture of one neuron: three astrocytes yielded optimal BMEC induction properties. Finally, an isogenic multicellular BBB model was successfully demonstrated employing BMECs, astrocytes, and neurons from the same donor iPSC source. It is anticipated that such an isogenic facsimile of the human BBB could have applications in furthering understanding the cellular interplay of the neurovascular unit in both healthy and diseased humans. Read the Editorial Highlight for this article on page 843.


Asunto(s)
Astrocitos/fisiología , Barrera Hematoencefálica/fisiología , Encéfalo/fisiología , Células Endoteliales/fisiología , Células Madre Pluripotentes Inducidas/fisiología , Neuronas/fisiología , Células 3T3 , Animales , Barrera Hematoencefálica/citología , Encéfalo/citología , Diferenciación Celular/fisiología , Células Cultivadas , Técnicas de Cocultivo , Endotelio Vascular/citología , Endotelio Vascular/fisiología , Humanos , Masculino , Ratones , Ratas , Ratas Sprague-Dawley
20.
Nucleic Acids Res ; 42(6): 3750-67, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24423866

RESUMEN

Light constitutes a primary signal whereby endogenous circadian clocks are synchronized ('entrained') with the day/night cycle. The molecular mechanisms underlying this vital process are known to require gene activation, yet are incompletely understood. Here, the light-induced transcriptome in the zebrafish central clock organ, the pineal gland, was characterized by messenger RNA (mRNA) sequencing (mRNA-seq) and microarray analyses, resulting in the identification of multiple light-induced mRNAs. Interestingly, a considerable portion of the molecular clock (14 genes) is light-induced in the pineal gland. Four of these genes, encoding the transcription factors dec1, reverbb1, e4bp4-5 and e4bp4-6, differentially affected clock- and light-regulated promoter activation, suggesting that light-input is conveyed to the core clock machinery via diverse mechanisms. Moreover, we show that dec1, as well as the core clock gene per2, is essential for light-entrainment of rhythmic locomotor activity in zebrafish larvae. Additionally, we used microRNA (miRNA) sequencing (miR-seq) and identified pineal-enhanced and light-induced miRNAs. One such miRNA, miR-183, is shown to downregulate e4bp4-6 mRNA through a 3'UTR target site, and importantly, to regulate the rhythmic mRNA levels of aanat2, the key enzyme in melatonin synthesis. Together, this genome-wide approach and functional characterization of light-induced factors indicate a multi-level regulation of the circadian clockwork by light.


Asunto(s)
Relojes Circadianos/genética , Luz , Activación Transcripcional/efectos de la radiación , Transcriptoma/efectos de la radiación , Pez Cebra/genética , Regiones no Traducidas 3' , Animales , Células HEK293 , Humanos , Locomoción , Redes y Vías Metabólicas/genética , MicroARNs/biosíntesis , MicroARNs/metabolismo , Glándula Pineal/metabolismo , ARN Mensajero/metabolismo , Factores de Transcripción/metabolismo , Pez Cebra/crecimiento & desarrollo , Pez Cebra/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...