Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Eur J Immunol ; 53(11): e2250326, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37562045

RESUMEN

We aimed to verify whether the immune system may represent a source of potential biomarkers for the stratification of immune-mediated necrotizing myopathies (IMNMs) subtypes. A group of 22 patients diagnosed with IMNM [7 with autoantibodies against signal recognition particle (SRP) and 15 against 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR)] and 12 controls were included. A significant preponderance of M1 macrophages was observed in both SRP+ and HMGCR+ muscle samples (p < 0.0001 in SRP+ and p = 0.0316 for HMGCR+ ), with higher values for SRP+ (p = 0.01). Despite the significant increase observed in the expression of TLR4 and all endosomal Toll-like receptors (TLRs) at protein level in IMNM muscle tissue, only TLR7 has been shown considerably upregulated compared to controls at transcript level (p = 0.0026), whereas TLR9 was even decreased (p = 0.0223). Within IMNM subgroups, TLR4 (p = 0.0116) mRNA was significantly increased in SRP+ compared to HMGCR+ patients. Within IMNM group, only IL-7 was differentially expressed between SRP+ and HMGCR+ patients, with higher values in SRP+ patients (p = 0.0468). Overall, innate immunity represents a key player in pathological mechanisms of IMNM. TLR4 and the inflammatory cytokine IL-7 represent potential immune biomarkers able to differentiate between SRP+ and HMGCR+ patients.


Asunto(s)
Enfermedades Autoinmunes , Miositis , Humanos , Interleucina-7 , Músculo Esquelético/patología , Receptor Toll-Like 4/genética , Miositis/diagnóstico , Miositis/patología , Autoanticuerpos , Biomarcadores , Partícula de Reconocimiento de Señal , Necrosis/patología
2.
Curr Opin Neurol ; 36(5): 455-463, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37338810

RESUMEN

PURPOSE OF REVIEW: Facioscapulohumeral muscular dystrophy (FSHD) is one of the most common myopathies, involving over 870,000 people worldwide and over 20 FSHD national registries. Our purpose was to summarize the main objectives of the scientific community on this topic and the moving trajectories of research from the past to the present. RECENT FINDINGS: To date, research is mainly oriented toward deciphering the molecular and pathogenetic basis of the disease by investigating DUX4-mediated muscle alterations. Accordingly, FSHD drug development has been escalating in the last years in an attempt to silence DUX4 or to block its downstream effectors. Breakthroughs in the field include the awareness that new biomarkers and outcome measures are required for tracking disease progression and patient stratification. The need to develop personalized therapeutic strategies is also crucial according to the phenotypic variability observed in FSHD subjects. SUMMARY: We analysed 121 literature reports published between 2021 and 2023 to assess the most recent advances in FSHD clinical and molecular research.


Asunto(s)
Distrofia Muscular Facioescapulohumeral , Humanos , Distrofia Muscular Facioescapulohumeral/genética , Biomarcadores , Desarrollo de Medicamentos , Proteínas de Homeodominio , Músculo Esquelético/patología
3.
Microsc Res Tech ; 86(11): 1517-1528, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37381675

RESUMEN

Down syndrome (DS) is a genetically based disease caused by triplication of chromosome 21. DS is characterized by multi-systemic premature aging associated with deficit in motor coordination, balance, and postural control. Using a morphological, morphometrical, and immunocytochemical ultrastructural approach, this study investigated in vastus lateralis muscle of Ts65Dn mouse, a murine model of DS, the effect of an adapted physical training on the extracellular matrix (ECM) characteristics and whether the forecasted exercise-induced ECM remodeling impacts on sarcomere organization. Morphometry demonstrated thicker basement membrane and larger collagen bundles with larger interfibrillar spacing as well as irregularly arrayed myofibrils and lower telethonin density on Z-lines in trisomic versus euploid sedentary mice. In agreement with the multi-systemic premature aging described in DS, these ECM alterations were similar to those previously observed in skeletal muscle of aged mice. Adapted physical training induced remodeling of ECM in both trisomic and euploid mice, that is, enlargement of the collagen bundles associated with hypertrophy of collagen fibrils and reduction of the interfibrillar spacing. A re-alignment of the myofibrils and a higher telethonin density on Z-line was found in trisomic mice. Altogether, our findings suggest that physical training is an effective tool in limiting/counteracting the trisomy-associated musculoskeletal structural anomalies. The current findings constitute a solid experimental background for further study investigating the possible positive effect of physical training on skeletal muscle performance. RESEARCH HIGHLIGHTS: Vastus lateralis muscle of trisomic mice shows aging-like alterations of extracellular matrix. Training promotes extracellular matrix remodeling. Training may be an effective tool to counteract trisomy-associated alterations of skeletal muscle.


Asunto(s)
Envejecimiento Prematuro , Síndrome de Down , Ratones , Animales , Síndrome de Down/genética , Trisomía , Modelos Animales de Enfermedad , Matriz Extracelular , Colágeno , Músculo Esquelético
4.
Eur J Neurosci ; 56(3): 4214-4223, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35666680

RESUMEN

Two likely causative mutations in the RYR1 gene were identified in two patients with myopathy with tubular aggregates, but no evidence of cores or core-like pathology on muscle biopsy. These patients were clinically evaluated and underwent routine laboratory investigations, electrophysiologic tests, muscle biopsy and muscle magnetic resonance imaging (MRI). They reported stiffness of the muscles following sustained activity or cold exposure and had serum creatine kinase elevation. The identified RYR1 mutations (p.Thr2206Met or p.Gly2434Arg, in patient 1 and patient 2, respectively) were previously identified in individuals with malignant hyperthermia susceptibility and are reported as causative according to the European Malignant Hyperthermia Group rules. To our knowledge, these data represent the first identification of causative mutations in the RYR1 gene in patients with tubular aggregate myopathy and extend the spectrum of histological alterations caused by mutation in the RYR1 gene.


Asunto(s)
Hipertermia Maligna , Miopatías Estructurales Congénitas , Humanos , Hipertermia Maligna/genética , Hipertermia Maligna/patología , Músculo Esquelético/patología , Mutación/genética , Miopatías Estructurales Congénitas/genética , Miopatías Estructurales Congénitas/patología , Canal Liberador de Calcio Receptor de Rianodina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...