Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Bone ; : 117190, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38960297

RESUMEN

This study investigates the biomechanics of type 2 diabetic bone fragility through a multiscale experimental strategy that considers structural, mechanical, and compositional components of ex vivo human trabecular and cortical bone. Human tissue samples were obtained from the femoral heads of patients undergoing total hip replacement. Mechanical testing was carried out on isolated trabecular cores using monotonic and cyclic compression loading and nanoindentation experiments, with bone microdamage analysed using micro-computed tomography (CT) imaging. Bone composition was evaluated using Raman spectroscopy, high-performance liquid chromatography, and fluorometric spectroscopy. It was found that human type 2 diabetic bone had altered mechanical, compositional, and morphological properties compared to non-type 2 diabetic bone. High-resolution micro-CT imaging showed that cores taken from the central trabecular region of the femoral head had higher bone mineral density (BMD), bone volume, trabecular thickness, and reduced trabecular separation. Type 2 diabetic bone also had enhanced macro-mechanical compressive properties under mechanical loading compared to non-diabetic controls, with significantly higher apparent modulus, yield stress, and pre-yield toughness evident, even when properties were normalised against the bone volume. Using nanoindentation, there were no significant differences in the tissue-level mechanical properties of cortical or trabecular bone in type 2 diabetic samples compared to controls. Through compositional analysis, higher levels of furosine were found in type 2 diabetic trabecular bone, and an increase in both furosine and carboxymethyl-lysine (an advanced glycation end-product) was found in cortical bone. Raman spectroscopy showed that type 2 diabetic bone had a higher mineral-to-matrix ratio, carbonate substitution, and reduced crystallinity compared to the controls. Together, this study shows that type 2 diabetes leads to distinct changes in both organic and mineral phases of the bone tissue matrix, but these changes did not coincide with any reduction in the micro- or macro-mechanical properties of the tissue under monotonic or cyclic loading.

2.
J Mech Behav Biomed Mater ; 153: 106472, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38432183

RESUMEN

At the tissue-scale and above, there are now well-established structure-property relationships that provide good approximations of the biomechanical performance of bone through, for example, power-law relationships that relate tissue mineral density to elastic properties. However, below the tissue-level, the individual role of the constituents becomes prominent and these simple relationships tend to break down, with more detailed theoretical and computational models are required to describe the mechanical response. In this study, a two-dimensional micromechanics damage-based representative volume element (RVE) of lamellar bone was developed, which included a novel implementation of a phase-field damage model to describe the behaviour of non-collagenous proteins at mineral-mineral and mineral-fibril interface regions. It was found that, while the stiffness of the tissue was governed by the relative proportion of extra-fibrillar mineral and mineralised collagen fibrils, the strength and toughness of the tissue in transverse direction relied on the interactions occurring at mineral-mineral and mineral-fibril interfaces, highlighting the prominence of non-collagenous proteins in determine fracture-based processes at this scale. While fractures tended to initiate in mineral rich areas of the extra-fibrillar mineral matrix, it was found that the presence of mineralised collagen fibrils at low density did not provide a substantial contribution to crack propagation behaviour under transverse loading. However, at physiological volume fraction (VfMCF=50%), different scenarios could arise depending on the relative strength value of the interphase around the MCFs ( [Formula: see text] ) to the interphase between individual minerals ( [Formula: see text] ): (i) When [Formula: see text] , MCFs appear to facilitate crack propagation with MCF-mineral debonding being the dominant failure mode; (ii) once γ>1, the MCFs hinder the microcracks, leading to inhibition of crack propagation, which can be regarded as an energy dissipation mechanism. The effective fracture properties of the tissue also experience a sudden increase in fracture work density (J-integral) once the crack is arrested by MCFs or severely deflected. Collectively, the predicted behaviour of the model compared well to those reported through experimental and computational methods, highlighting its potential to provide further understanding into the mechanistic response of bone ultrastructure alterations related to the structural and compositional changes resulting from disease and aging.


Asunto(s)
Colágeno , Fracturas Óseas , Humanos , Colágeno/química , Huesos/metabolismo , Matriz Extracelular/metabolismo , Minerales/metabolismo , Estrés Mecánico
3.
J Mech Behav Biomed Mater ; 153: 106471, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38458079

RESUMEN

Bone is a naturally occurring composite material composed of a stiff mineral phase and a compliant organic matrix of collagen and non-collagenous proteins (NCP). While diverse mineral morphologies such as platelets and grains have been documented, the precise role of individual constituents, and their morphology, remains poorly understood. To understand the role of constituent morphology on the fracture behaviour of lamellar bone, a damage based representative volume element (RVE) was developed, which considered various mineral morphologies and mineralised collagen fibril (MCF) configurations. This model framework incorporated a novel phase-field damage model to predict the onset and evolution of damage at mineral-mineral and mineral-MCF interfaces. It was found that platelet-based mineral morphologies had superior mechanical performance over their granular counterparts, owing to their higher load-bearing capacity, resulting from a higher aspect ratio. It was also found that MCFs had a remarkable capacity for energy dissipation under axial loading, with these fibrillar structures acting as barriers to crack propagation, thereby enhancing overall elongation and toughness. Interestingly, the presence of extrafibrillar platelet-based minerals also provided an additional toughening through a similar mechanism, whereby these structures also inhibited crack propagation. These findings demonstrate that the two primary constituent materials of lamellar bone play a key role in its toughening behaviour, with combined effect by both mineral and MCFs to inhibit crack propagation at this scale. These results have provided novel insight into the fracture behaviour of lamellar bone, enhancing our understanding of microstructure-property relationships at the sub-tissue level.


Asunto(s)
Huesos , Fracturas Óseas , Humanos , Estrés Mecánico , Huesos/metabolismo , Colágeno/química , Minerales/metabolismo
4.
Artículo en Inglés | MEDLINE | ID: mdl-38315312

RESUMEN

PURPOSE: Altered hemodynamics caused by the presence of an endovascular device may undermine the success of peripheral stenting procedures. Flow-enhanced stent designs are under investigation to recover physiological blood flow patterns in the treated artery and reduce long-term complications. However, flow-enhanced designs require the development of customised manufacturing processes that consider the complex behaviour of Nickel-Titanium (Ni-Ti). While the manufacturing routes of traditional self-expanding Ni-Ti stents are well-established, the process to introduce alternative stent designs is rarely reported in the literature, with much of this information (especially related to shape-setting step) being commercially sensitive and not reaching the public domain, as yet. METHODS: A reliable manufacturing method was developed and improved to induce a helical ridge onto laser-cut and wire-braided Nickel-Titanium self-expanding stents. The process consisted of fastening the stent into a custom-built fixture that provided the helical shape, which was followed by a shape-setting in air furnace and rapid quenching in cold water. The parameters employed for the shape-setting in air furnace were thoroughly explored, and their effects assessed in terms of the mechanical performance of the device, material transformation temperatures and surface finishing. RESULTS: Both stents were successfully imparted with a helical ridge and the optimal heat treatment parameters combination was found. The settings of 500 °C/30 min provided mechanical properties comparable with the original design, and transformation temperatures suitable for stenting applications (Af = 23.5 °C). Microscopy analysis confirmed that the manufacturing process did not alter the surface finishing. Deliverability testing showed the helical device could be loaded onto a catheter delivery system and deployed with full recovery of the expanded helical configuration. CONCLUSION: This demonstrates the feasibility of an additional heat treatment regime to allow for helical shape-setting of laser-cut and wire-braided devices that may be applied to further designs.

5.
Int J Biol Macromol ; 264(Pt 1): 130374, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38408575

RESUMEN

Silk is a natural engineering material with a unique set of properties. The major constituent of silk is fibroin, a protein widely used in the biomedical field because of its mechanical strength, toughness and elasticity, as well as its biocompatibility and biodegradability. The domestication of silkworms allows large amounts of fibroin to be extracted inexpensively from silk cocoons. However, the industrial extraction process has drawbacks in terms of sustainability and the quality of the final medical product. The heterologous production of fibroin using recombinant DNA technology is a promising approach to address these issues, but the production of such recombinant proteins is challenging and further optimization is required due to the large size and repetitive structure of fibroin's DNA and amino acid sequence. In this review, we describe the structure-function relationship of fibroin, the current extraction process, and some insights into the sustainability of silk production for biomedical applications. We focus on recent advances in molecular biotechnology underpinning the production of recombinant fibroin, working toward a standardized, successful and sustainable process.


Asunto(s)
Bombyx , Fibroínas , Animales , Bombyx/química , Fibroínas/química , Materiales Biocompatibles/química , Biotecnología , Seda/química
6.
Nanoscale ; 16(6): 3173-3184, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38259246

RESUMEN

Bone as a hierarchical composite structure plays a myriad of roles in vertebrate skeletons including providing the structural stability of the body. Despite this critical role, the mechanical behaviour at the sub-micron levels of bone's hierarchy remains poorly understood. At this scale, bone is composed of Mineralised Collagen Fibrils (MCF) embedded within an extra-fibrillar matrix that consists of hydroxyapatite minerals and non-collagenous proteins. Recent experimental studies hint at the significance of the extra-fibrillar matrix in providing the bone with the stiffness and ductility needed to serve its structural roles. However, due to limited resolution of experimental tools, it is not clear how the arrangement of minerals, and in particular their relative distribution between the intra- and extra-fibrillar space contribute to bone's remarkable mechanical properties. In this study, a Coarse Grained Molecular Dynamics (CGMD) framework was developed to study the mechanical properties of MCFs embedded within an extra-fibrillar mineral matrix and the precise roles extra- and intra-fibrillar mineralisation on the load-deformation response was investigated. It was found that the presence of extra-fibrillar mineral resulted in the development of substantial residual stress in the system, by limiting MCF shortening that took place during intra-fibrillar mineralisation, resulting in substantial compressive residual stresses in the extra-fibrillar mineral phase. The simulation results also revealed the crucial role of extra-fibrillar mineralisation in determining the elastic response of the Extrafibrillar mineralised MCF (EFM-MCF) system up to the yield point, while the fibrillar collagen affected the post-yield behaviour. When physiological levels of mineralisation were considered, the mechanical response of the EFM-MCF systems was characterised by high ductility and toughness, with micro-cracks being distributed across the extra-fibrillar matrix, and MCFs effectively bridging these cracks leading to an excellent combination of strength and toughness. Together, these results provide novel insight into the deformation mechanisms of an EFM-MCF system and highlight that this universal building block, which forms the basis for lamellar bone, can provide an excellent balance of stiffness, strength and toughness, achieving mechanical properties that are far beyond the capabilities of the individual constituents acting alone.


Asunto(s)
Colágeno , Simulación de Dinámica Molecular , Fenómenos Biomecánicos , Colágeno/química , Estrés Mecánico , Minerales
7.
J Mech Behav Biomed Mater ; 151: 106328, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38184929

RESUMEN

The objective of this study is to evaluate the mechanical properties and energy absorption characteristics of the gyroid, dual-lattice and spinodoid structures, as biomimetic lattices, through finite element analysis and experimental characterisation. As part of the study, gyroid and dual-lattice structures at 10% volume fraction were 3D-printed using an elastic resin, and mechanically tested under uniaxial compression. Computational models were calibrated to the observed experimental data and the response of higher volume fraction structures were simulated in an explicit finite element solver. Stress-strain data of groups of lattices at different volume fractions were studied and energy absorption parameters including total energy absorbed per unit volume, energy absorption efficiency and onset of densification strain were calculated. Also, the structures were characterized into bending-dominant and stretch-dominant structures, according to their nodal connectivity and Gibson-and-Ashby's law. The results of the study showed that the dual-lattice is capable of absorbing more energy at each volume fraction cohort. However, gyroid structures showed higher energy absorption efficiency and the onset of densification at higher strains. The spinodoid structure was found to be the poorest structure in terms of energy absorption, specifically at low volume fractions. Also, the results showed that the dual-lattice was a stretch dominated structure, while the gyroid structure was a bending dominated structure, which may be a reason that it is a better candidate for energy absorption applications.


Asunto(s)
Biomimética , Humanos , Análisis de Elementos Finitos , Fenómenos Físicos
8.
Comput Methods Programs Biomed ; 242: 107781, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37683458

RESUMEN

BACKGROUND AND OBJECTIVES: Bioresorbable braided stents, typically made of bioresorbable polymers such as poly-l-lactide (PLLA), have great potential in the treatment of critical limb ischemia, particularly in cases of long-segment occlusions and lesions with high angulation. However, the successful adoption of these devices is limited by their low radial stiffness and reduced elastic modulus of bioresorbable polymers. This study proposes a computational optimization procedure to enhance the mechanical performance of bioresorbable braided stents and consequently improve the treatment of critical limb ischemia. METHODS: Finite element analyses were performed to replicate the radial crimping test and investigate the implantation procedure of PLLA braided stents. The stent geometry was characterized by four design parameters: number of wires, wire diameter, initial stent diameter, and braiding angle. Manufacturing constraints were considered to establish the design space. The mechanical performance of the stent was evaluated by defining the radial force, foreshortening, and peak maximum principal stress of the stent as objectives and constraint functions in the optimization problem. An approximate relationship between the objectives, constraint, and the design parameters was defined using design of experiment coupled with surrogate modelling. Surrogate models were then interrogated within the design space, and a multi-objective design optimization was conducted. RESULTS: The simulation of radial crimping was successfully validated against experimental data. The radial force was found to be primarily influenced by the number of wires, wire diameter, and braiding angle, with the wire diameter having the most significant impact. Foreshortening was predominantly affected by the braiding angle. The peak maximum principal stress exhibited contrasting behaviour compared to the radial force for all parameters, with the exception of the number of wires. Among the Pareto-optimal design candidates, feasible peak maximum principal stress values were observed, with the braiding angle identified as the differentiating factor among these candidates. CONCLUSIONS: The exploration of the design space enabled both the understanding of the impact of design parameters on the mechanical performance of bioresorbable braided stents and the successful identification of optimal design candidates. The optimization framework contributes to the advancement of innovative bioresorbable braided stents for the effective treatment of critical limb ischemia.


Asunto(s)
Implantes Absorbibles , Isquemia Crónica que Amenaza las Extremidades , Humanos , Estrés Mecánico , Stents , Polímeros , Diseño de Prótesis
9.
PLoS One ; 18(8): e0283492, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37556457

RESUMEN

The objective of this study is to present a credibility assessment of finite element modelling of self-expanding nickel-titanium (Ni-Ti) stents through verification and validation (VV) activities, as set out in the ASME VV-40 standard. As part of the study, the role of calculation verification, model input sensitivity, and model validation is examined across three different application contexts (radial compression, stent deployment in a vessel, fatigue estimation). A commercially available self-expanding Ni-Ti stent was modelled, and calculation verification activities addressed the effects of mesh density, element integration and stable time increment on different quantities of interests, for each context of use considered. Sensitivity analysis of the geometrical and material input parameters and validation of deployment configuration with in vitro comparators were investigated. Results showed similar trends for global and local outputs across the contexts of use in response to the selection of discretization parameters, although with varying sensitivities. Mesh discretisation showed substantial variability for less than 4 × 4 element density across the strut cross-section in radial compression and deployment cases, while a finer grid was deemed necessary in fatigue estimation for reliable predictions of strain/stress. Element formulation also led to substantial variation depending on the chosen integration options. Furthermore, for explicit analyses, model results were highly sensitive to the chosen target time increment (e.g., mass scaling parameters), irrespective of whether quasistatic conditions were ensured (ratios of kinetic and internal energies below 5%). The higher variability was found for fatigue life simulation, with the estimation of fatigue safety factor varying up to an order of magnitude depending on the selection of discretization parameters. Model input sensitivity analysis highlighted that the predictions of outputs such as radial force and stresses showed relatively low sensitivity to Ni-Ti material parameters, which suggests that the calibration approaches used in the literature to date appear reasonable, but a higher sensitivity to stent geometry, namely strut thickness and width, was found. In contrast, the prediction of vessel diameter following deployment was least sensitive to numerical parameters, and its validation with in vitro comparators offered a simple and accurate (error ~ 1-2%) method when predicting diameter gain, and lumen area, provided that the material of the vessel is appropriately characterized and modelled.


Asunto(s)
Níquel , Titanio , Análisis de Elementos Finitos , Estrés Mecánico , Stents , Simulación por Computador , Diseño de Prótesis
10.
Bioact Mater ; 26: 437-451, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36993789

RESUMEN

In this study, the influence of a plasma electrolytic oxidation (PEO) surface treatment on a medical-grade WE43-based magnesium alloy is examined through an experimental and computational framework that considers the effects of localised corrosion features and mechanical properties throughout the corrosion process. First, a comprehensive in-vitro immersion study was performed on WE43-based tensile specimens with and without PEO surface modification, which included fully automated spatial reconstruction of the phenomenological features of corrosion through micro-CT scanning, followed by uniaxial tensile testing. Then the experimental data of both unmodified and PEO-modified groups were used to calibrate parameters of a finite element-based surface corrosion model. In-vitro, it was found that the WE43-PEO modified group had a significantly lower corrosion rate and maintained significantly higher mechanical properties than the unmodified. While corrosion rates were ∼50% lower in the WE43-PEO modified specimens, the local geometric features of corroding surfaces remained similar to the unmodified WE43 group, however evolving after almost the double amount of time. We were also able to quantitatively demonstrate that the PEO surface treatment on magnesium continued to protect samples from corrosion throughout the entire period tested, and not just in the early stages of corrosion. Using the results from the testing framework, the model parameters of the surface-based corrosion model were identified for both groups. This enabled, for the first time, in-silico prediction of the physical features of corrosion and the mechanical performance of both unmodified and PEO modified magnesium specimens. This simulation framework can enable future in-silico design and optimisation of bioabsorbable magnesium devices for load-bearing medical applications.

11.
Bone ; 170: 116672, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36646266

RESUMEN

Individuals with Type-2 Diabetes (T2D) have an increased risk of bone fracture, without a reduction in bone mineral density. It is hypothesised that the hyperglycaemic state caused by T2D forms an excess of Advanced Glycated End-products (AGEs) in the organic matrix of bone, which are thought to stiffen the collagen network and lead to impaired mechanical properties. However, the mechanisms are not well understood. This study aimed to investigate the geometrical, structural and material properties of diabetic cortical bone during the development and progression of T2D in ZDF (fa/fa) rats at 12-, 26- and 46-weeks of age. Longitudinal bone growth was impaired as early as 12-weeks of age and by 46-weeks bone size was significantly reduced in ZDF (fa/fa) rats versus controls (fa/+). Diabetic rats had significant structural deficits, such as bending rigidity, ultimate moment and energy-to-failure measured via three-point bend testing. Tissue material properties, measured by taking bone geometry into account, were altered as the disease progressed, with significant reductions in yield and ultimate strength for ZDF (fa/fa) rats at 46-weeks. FTIR analysis on cortical bone powder demonstrated that the tissue material deficits coincided with changes in tissue composition, in ZDF (fa/fa) rats with long-term diabetes having a reduced carbonate:phosphate ratio and increased acid phosphate content when compared to age-matched controls, indicative of an altered bone turnover process. AGE accumulation, measured via fluorescent assays, was higher in the skin of ZDF (fa/fa) rats with long-term T2D, bone AGEs did not differ between strains and neither AGEs correlated with bone strength. In conclusion, bone fragility in the diabetic ZDF (fa/fa) rats likely occurs through a multifactorial mechanism influenced initially by impaired bone growth and development and proceeding to an altered bone turnover process that reduces bone quality and impairs biomechanical properties as the disease progresses.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Ratas , Animales , Ratas Zucker , Diabetes Mellitus Experimental/complicaciones , Huesos , Diabetes Mellitus Tipo 2/complicaciones , Productos Finales de Glicación Avanzada
12.
J Mech Behav Biomed Mater ; 138: 105637, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36610284

RESUMEN

This study developed an enhanced phenomenological model for the predictions of surface-based localised corrosion of magnesium alloys for use in medical applications. The modelling framework extended previous surface-based approaches by considering the role of ß-phase components throughout the material volume to better predict spatial and temporal aspects of surface-based corrosion in magnesium alloys. This enhanced surface-based corrosion model offers many advantages as it (i) captures multi-directional pitting, (ii) captures various pit morphologies, (iii) eliminates mesh sizing effects, (iv) reduces computational cost through custom time controls (v) offers control of pit sizing and (vi) produces corrosion rates that are independent of pitting parameter values. The model was fully implemented in three dimensions within the finite element framework and shows excellent potential to enable robust predictions of the long-term performance of magnesium-based implants undergoing corrosion.


Asunto(s)
Aleaciones , Magnesio , Corrosión , Implantes Absorbibles , Ensayo de Materiales
13.
J R Soc Interface ; 20(198): 20220803, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36695019

RESUMEN

Mineralized collagen fibrils (MCFs) comprise collagen molecules and hydroxyapatite (HAp) crystals and are considered universal building blocks of bone tissue, across different bone types and species. In this study, we developed a coarse-grained molecular dynamics (CGMD) framework to investigate the role of mineral arrangement on the load-deformation behaviour of MCFs. Despite the common belief that the collagen molecules are responsible for flexibility and HAp minerals are responsible for stiffness, our results showed that the mineral phase was responsible for limiting collagen sliding in the large deformation regime, which helped the collagen molecules themselves undergo high tensile loading, providing a substantial contribution to the ultimate tensile strength of MCFs. This study also highlights different roles for the mineralized and non-mineralized protofibrils within the MCF, with the mineralized groups being primarily responsible for load carrying due to the presence of the mineral phase, while the non-mineralized groups are responsible for crack deflection. These results provide novel insight into the load-deformation behaviour of MCFs and highlight the intricate role that both collagen and mineral components have in dictating higher scale bone biomechanics.


Asunto(s)
Colágeno , Simulación de Dinámica Molecular , Colágeno/química , Huesos , Matriz Extracelular , Fenómenos Biomecánicos , Minerales/química
14.
J Mech Behav Biomed Mater ; 138: 105619, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36525877

RESUMEN

It has been suggested that adverse changes in bone quality due to the accumulation of advanced glycation end-products (AGEs) may play a role in the increased skeletal fragility. These non-enzymatic glycation mediated crosslinks are caused due to the presence of sugars in the extracellular space and can be induced in-vitro. AGEs exist naturally in bone, but with diseases such as type-2 diabetes, they are found at higher levels. While previous studies have examined the relationships between AGE accumulation and some mechanical properties, there is a lack of understanding of how AGE accumulation affects the fracture mechanics behaviour of bone tissue at fall-related loading rates. The objective of this study was to investigate the relationship between AGE accumulation and the fracture mechanics of cortical bone tissue. An in vitro glycation model was used to simulate diabetic conditions in twenty anatomically adjacent pairs of bone from a single bovine femur, which reduced the possibility of inter-specimen variability. Mechanical characterisation was carried out using 3-point bend, fracture toughness and nanoindentation testing, while bone composition was analysed by quantifying the accumulation of fluorescent AGEs. Under three-point bend testing, it was found that the yield stress, ultimate flexural strength, and secant modulus of the glycated samples were significantly higher than the controls. Furthermore, fracture toughness testing showed that the critical fracture toughness was increased by 16% in glycated samples compared to controls. These results provide no evidence that AGEs alone play a role in bone fragility at fall-related loading rates, with AGE accumulation actually found to enhance several pre- and post-yield properties of the tissue.


Asunto(s)
Accidentes por Caídas , Fracturas Óseas , Animales , Bovinos , Reacción de Maillard , Productos Finales de Glicación Avanzada , Fenómenos Biomecánicos , Huesos , Hueso Cortical , Densidad Ósea
15.
J Mech Behav Biomed Mater ; 138: 105584, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36436405

RESUMEN

In this study, we evaluate the performance of three algorithms as computational models of trabecular bone architecture, through systematic evaluation of morphometric, topological, and mechanical properties. Here, we consider the widely-used gyroid lattice structure, the recently-developed spinodoid structure and a structure similar to Voronoi lattices introduced here as the dual-lattice. While all computational models were calibrated to recreate the trabecular tissue volume (e.g. BV/TV), it was found that both the gyroid- and spinodoid-based structures showed substantial differences in many other morphometric and topological parameters and, in turn, showed lower effective mechanical properties compared to trabecular bone. The newly-developed dual-lattice structures better captured both morphometric parameters and mechanical properties, despite certain differences being evident their topological configuration compared to trabecular bone. Still, these computational algorithms provide useful platforms to investigate trabecular bone mechanics and for designing biomimetic structures, which could be produced through additive manufacturing for applications that include bone substitutes, scaffolds and porous implants. Furthermore, the software for the creation of the structures has been added to the open source toolbox GIBBON and is therefore freely available to the community.


Asunto(s)
Hueso Esponjoso , Programas Informáticos , Algoritmos , Porosidad , Modelos Estructurales
16.
J Mech Behav Biomed Mater ; 138: 105568, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36459705

RESUMEN

Much of our current understanding of the performance of self-expanding wire-braided stents is based on mechanical testing of Nitinol-based or polymeric non-bioresorbable (e.g. PET, PP etc.) devices. The small amount of data present for bioresorbable devices characterizes stents with big nominal diameters (D>6mm), with a distinct lack of data describing the mechanical performance of small-diameter wire-braided bioresorbable devices (D≤5mm). This study presents a systematic investigation of the mechanical performance of wire-braided bioresorbable Poly-L-Lactic Acid (PLLA) stents having different braiding angles (α=45° , α=30°, and α=20°), wire diameters (d=100µm, and d=150µm), wire count (n=24 and n=48), braiding patterns (1:1-1, 2:2-1 and 1:1-2) and stent diameters (D=5mm, D=4mm, and D=2.5mm). Mechanical characterisation was carried out by evaluating the radial, longitudinal and bending response of the devices. Our results showed that smaller braid angles, larger wire diameters, higher number of wires and smaller stent diameter led to an increase in the stent mechanical properties across each of the three mechanical tests performed. It was found that geometrical features of a polymeric braided stent could be adapted to achieve a similar performance to the one of a metallic device. In particular, substantial increases in stent mechanical properties were found for a low braiding angle and when the braiding pattern followed a one-over-one-under configuration with two wires in parallel (1:1-2). Finally, it was shown that a mathematical model proposed in literature for metal braided stents can provide reasonable predictions also of polymeric stent performance but just in circumstances where wire friction does not have a dominant role. This study presents a wide range of experimental data that can provide an important reference for further development of wire-braided bioresorbable devices.


Asunto(s)
Poliésteres , Stents , Modelos Teóricos , Polímeros
17.
Bioact Mater ; 21: 32-43, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36017069

RESUMEN

This study presents a computational framework that investigates the effect of localised surface-based corrosion on the mechanical performance of a magnesium-based alloy. A finite element-based phenomenological corrosion model was used to generate a wide range of corrosion profiles, with subsequent uniaxial tensile test simulations to predict the mechanical response to failure. The python-based detection framework PitScan provides detailed quantification of the spatial phenomenological features of corrosion, including a full geometric tracking of corroding surface. Through this approach, this study is the first to quantitatively demonstrate that a surface-based non-uniform corrosion model can capture both the geometrical and mechanical features of a magnesium alloy undergoing corrosion by comparing to experimental data. Using this verified corrosion modelling approach, a wide range of corrosion scenarios was evaluated and enabled quantitative relationships to be established between the mechanical integrity and key phenomenological corrosion features. In particular, we demonstrated that the minimal cross-sectional area parameter was the strongest predictor of the remaining mechanical strength (R2 = 0.98), with this relationship being independent of the severity or spatial features of localised surface corrosion. Interestingly, our analysis demonstrated that parameters described in ASTM G46-94 showed weaker correlations to the mechanical integrity of corroding specimens, compared to parameters determined by Pitscan. This study establishes new mechanistic insight into the performance of the magnesium-based materials undergoing corrosion.

18.
Cells ; 11(18)2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-36139439

RESUMEN

In craniofacial bone defects, the promotion of bone volume augmentation remains a challenge. Finding strategies for bone regeneration such as combining resorbable minerals with organic polymers would contribute to solving the bone volume roadblock. Here, dicalcium phosphate dihydrate, chitosan and hyaluronic acid were used to functionalize a bone-side collagen membrane. Despite an increase in the release of inflammatory mediators by human circulating monocytes, the in vivo implantation of the functionalized membrane allowed the repair of a critical-sized defect in a calvaria rat model with de novo bone exhibiting physiological matrix composition and structural organization. Microtomography, histological and Raman analysis combined with nanoindentation testing revealed an increase in bone volume in the presence of the functionalized membrane and the formation of woven bone after eight weeks of implantation; these data showed the potential of dicalcium phosphate dihydrate, chitosan and hyaluronic acid to induce an efficient repair of critical-sized bone defects and establish the importance of thorough multi-scale characterization in assessing biomaterial outcomes in animal models.


Asunto(s)
Quitosano , Animales , Materiales Biocompatibles , Fosfatos de Calcio , Quitosano/farmacología , Colágeno , Humanos , Ácido Hialurónico/farmacología , Mediadores de Inflamación , Minerales , Ratas
19.
Front Med Technol ; 4: 886458, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35800467

RESUMEN

Endovascular stenting presents a promising approach to treat peripheral artery stenosis. However, a significant proportion of patients require secondary interventions due to complications such as in-stent restenosis and late stent thrombosis. Clinical failure of stents is not only attributed to patient factors but also on endothelial cell (EC) injury response, stent deployment techniques, and stent design. Three-dimensional in vitro bioreactor systems provide a valuable testbed for endovascular device assessment in a controlled environment replicating hemodynamic flow conditions found in vivo. To date, very few studies have verified the design of bioreactors based on applied flow conditions and their impact on wall shear stress, which plays a key role in the development of vascular pathologies. In this study, we develop a computationally informed bioreactor capable of capturing responses of human umbilical vein endothelial cells seeded on silicone tubes subjected to hemodynamic flow conditions and deployment of a self-expanding nitinol stents. Verification of bioreactor design through computational fluid dynamics analysis confirmed the application of pulsatile flow with minimum oscillations. EC responses based on morphology, nitric oxide (NO) release, metabolic activity, and cell count on day 1 and day 4 verified the presence of hemodynamic flow conditions. For the first time, it is also demonstrated that the designed bioreactor is capable of capturing EC responses to stent deployment beyond a 24-hour period with this testbed. A temporal investigation of EC responses to stent implantation from day 1 to day 4 showed significantly lower metabolic activity, EC proliferation, no significant changes to NO levels and EC's aligning locally to edges of stent struts, and random orientation in between the struts. These EC responses were indicative of stent-induced disturbances to local hemodynamics and sustained EC injury response contributing to neointimal growth and development of in-stent restenosis. This study presents a novel computationally informed 3D in vitro testbed to evaluate stent performance in presence of hemodynamic flow conditions found in native peripheral arteries and could help to bridge the gap between the current capabilities of 2D in vitro cell culture models and expensive pre-clinical in vivo models.

20.
J Mech Behav Biomed Mater ; 132: 105259, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35569290

RESUMEN

Despite being commonly employed to treat peripheral artery disease, self-expanding Nitinol stents are still associated with relatively high incidence of failure in the mid- and long-term due to in-stent restenosis or fatigue fracture. The practice of stent oversizing is necessary to obtain suitable lumen gain and apposition to the vessel wall, though it is regarded as a potential cause of negative clinical outcomes when mis-sizing occurs. The objective of this study was to develop a computational model to provide a better understanding of the structural effects of stent sizing in a patient-specific scenario, considering oversizing ratio OS, defined as the stent nominal diameter to the average vessel diameter, between 1.0 and 1.8. It was found that OS < 1.2 resulted in problematic short-term outcomes, with poor lumen gain and significant strut malapposition. Oversizing ratios that were in the range 1.2 ≤ OS ≤ 1.4 provided the optimum biomechanical performance following implantation, with improved lumen gain, reduced incomplete stent apposition and favourable predicted long-term fatigue performance. Excessive oversizing, OS > 1.4, did not provide any further benefit in outcomes, showing limited increases in lumen gain and unfavourable long-term performance, with higher mean strain values predicted from the fatigue analysis. Therefore, our findings predict that the optimal oversizing ratio for self-expanding Nitinol stents is in the range of 1.2 ≤ OS ≤ 1.4, which is similar to clinical observations, with this study providing detailed insight into the biomechanical basis for this.


Asunto(s)
Arteria Femoral , Enfermedad Arterial Periférica , Aleaciones , Humanos , Enfermedad Arterial Periférica/terapia , Diseño de Prótesis , Stents , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...