Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
Más filtros













Intervalo de año de publicación
1.
Chem Biodivers ; 21(5): e202301346, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38520744

RESUMEN

It was found that Argentatins A and B triterpenoids make up approximately 20-30 % of the waste resin produced from the industrial processes to isolate rubber from P. argentatum. We have developed an efficient protocol for synthesizing cycloartane-16ß-ol derivatives by opening the oxepane ring of argentatin B acetate (2) with BF3-OEt2. Although three new cycloartenol derivatives showed high cytotoxicity against PC-3 and HCT-15 cancer cell lines, nevertheless, the best results were obtained for (16ß,24R) -(16,24-epoxy-cycloartan-2(1H)-ylidene) acetate (14), compound with intact oxepane ring. These results indicate that the substituents in the argentatin nucleus and a side chain account for the cytotoxic activity. However, according to the selectivity index (SI), 14 did not show selectivity activity to cancer cell lines over the HaCat noncancerous cell line. The compound 3ß,16ß-Dihydroxy-cycloartan-24-one (5), synthesized by oxepane opening, demonstrated high cytotoxic activity to cancer cell lines and showed a remarkable selectivity to cancer cell lines over the noncancerous ones. These results suggest that 5 could lead to the development of new anticancer compounds.


Asunto(s)
Antineoplásicos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Relación Estructura-Actividad , Proliferación Celular/efectos de los fármacos , Triterpenos/farmacología , Triterpenos/química , Triterpenos/síntesis química , Tetrazoles/farmacología , Tetrazoles/síntesis química , Tetrazoles/química , Estructura Molecular , Relación Dosis-Respuesta a Droga , Supervivencia Celular/efectos de los fármacos
2.
J Pharmacol Toxicol Methods ; 126: 107498, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38432528

RESUMEN

BACKGROUND AND PURPOSE: A recent paradigm shift in proarrhythmic risk assessment suggests that the integration of clinical, non-clinical, and computational evidence can be used to reach a comprehensive understanding of the proarrhythmic potential of drug candidates. While current computational methodologies focus on predicting the incidence of proarrhythmic events after drug administration, the objective of this study is to predict concentration-response relationships of QTc as a clinical endpoint. EXPERIMENTAL APPROACH: Full heart computational models reproducing human cardiac populations were created to predict the concentration-response relationship of changes in the QT interval as recommended for clinical trials. The concentration-response relationship of the QT-interval prolongation obtained from the computational cardiac population was compared against the relationship from clinical trial data for a set of well-characterized compounds: moxifloxacin, dofetilide, verapamil, and ondansetron. KEY RESULTS: Computationally derived concentration-response relationships of QT interval changes for three of the four drugs had slopes within the confidence interval of clinical trials (dofetilide, moxifloxacin and verapamil) when compared to placebo-corrected concentration-ΔQT and concentration-ΔQT regressions. Moxifloxacin showed a higher intercept, outside the confidence interval of the clinical data, demonstrating that in this example, the standard linear regression does not appropriately capture the concentration-response results at very low concentrations. The concentrations corresponding to a mean QTc prolongation of 10 ms were consistently lower in the computational model than in clinical data. The critical concentration varied within an approximate ratio of 0.5 (moxifloxacin and ondansetron) and 1 times (dofetilide, verapamil) the critical concentration observed in human clinical trials. Notably, no other in silico methodology can approximate the human critical concentration values for a QT interval prolongation of 10 ms. CONCLUSION AND IMPLICATIONS: Computational concentration-response modelling of a virtual population of high-resolution, 3-dimensional cardiac models can provide comparable information to clinical data and could be used to complement pre-clinical and clinical safety packages. It provides access to an unlimited exposure range to support trial design and can improve the understanding of pre-clinical-clinical translation.


Asunto(s)
Fluoroquinolonas , Síndrome de QT Prolongado , Fenetilaminas , Sulfonamidas , Humanos , Relación Dosis-Respuesta a Droga , Electrocardiografía , Fluoroquinolonas/efectos adversos , Frecuencia Cardíaca , Síndrome de QT Prolongado/inducido químicamente , Síndrome de QT Prolongado/tratamiento farmacológico , Moxifloxacino/uso terapéutico , Ondansetrón/uso terapéutico , Verapamilo
3.
Ann Biomed Eng ; 52(3): 719-733, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38097896

RESUMEN

TAVR has emerged as a standard approach for treating severe aortic stenosis patients. However, it is associated with several clinical complications, including subclinical leaflet thrombosis characterized by Hypoattenuated Leaflet Thickening (HALT). A rigorous analysis of TAVR device thrombogenicity considering anatomical variations is essential for estimating this risk. Clinicians use the Sinotubular Junction (STJ) diameter for TAVR sizing, but there is a paucity of research on its influence on TAVR devices thrombogenicity. A Medtronic Evolut® TAVR device was deployed in three patient models with varying STJ diameters (26, 30, and 34 mm) to evaluate its impact on post-deployment hemodynamics and thrombogenicity, employing a novel computational framework combining prosthesis deployment and fluid-structure interaction analysis. The 30 mm STJ patient case exhibited the best hemodynamic performance: 5.94 mmHg mean transvalvular pressure gradient (TPG), 2.64 cm2 mean geometric orifice area (GOA), and the lowest mean residence time (TR)-indicating a reduced thrombogenic risk; 26 mm STJ exhibited a 10 % reduction in GOA and a 35% increase in mean TPG compared to the 30 mm STJ; 34 mm STJ depicted hemodynamics comparable to the 30 mm STJ, but with a 6% increase in TR and elevated platelet stress accumulation. A smaller STJ size impairs adequate expansion of the TAVR stent, which may lead to suboptimal hemodynamic performance. Conversely, a larger STJ size marginally enhances the hemodynamic performance but increases the risk of TAVR leaflet thrombosis. Such analysis can aid pre-procedural planning and minimize the risk of TAVR leaflet thrombosis.


Asunto(s)
Estenosis de la Válvula Aórtica , Prótesis Valvulares Cardíacas , Trombosis , Reemplazo de la Válvula Aórtica Transcatéter , Humanos , Válvula Aórtica/cirugía , Reemplazo de la Válvula Aórtica Transcatéter/efectos adversos , Aorta Torácica , Hemodinámica , Trombosis/etiología , Estenosis de la Válvula Aórtica/cirugía , Prótesis Valvulares Cardíacas/efectos adversos , Resultado del Tratamiento
4.
Front Cardiovasc Med ; 10: 1233712, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38094118

RESUMEN

Stroke is the second leading cause of death worldwide. Nearly two-thirds of strokes are produced by cardioembolisms, and half of cardioembolic strokes are triggered by Atrial Fibrillation (AF), the most common type of arrhythmia. A more recent cause of cardioembolisms is Transcatheter Aortic Valve Replacements (TAVRs), which may onset post-procedural adverse events such as stroke and Silent Brain Infarcts (SBIs), for which no definitive treatment exists, and which will only get worse as TAVRs are implanted in younger and lower risk patients. It is well known that some specific characteristics of elderly patients may lower the safety and efficacy of anticoagulation therapy, making it a real urgency to find alternative therapies. We propose a device consisting of a strut structure placed at the base of the treated artery to model the potential risk of cerebral embolisms caused by dislodged debris of varying sizes. This work analyzes a design based on a patented medical device, intended to block cardioembolisms from entering the cerebrovascular system, with a particular focus on AF, and potentially TAVR patients. The study has been carried out in two stages. Both of them based on computational fluid dynamics (CFD) coupled with Lagrangian particle tracking method. The first stage of the work evaluates a variety of strut thicknesses and inter-strut spacings, contrasting with the device-free baseline geometry. The analysis is carried out by imposing flowrate waveforms characteristic of both healthy and AF patients. Boundary conditions are calibrated to reproduce physiological flowrates and pressures in a patient's aortic arch. In the second stage, the optimal geometric design from the first stage was employed, with the addition of lateral struts to prevent the filtration of particles and electronegatively charged strut surfaces, studying the effect of electrical forces on the clots if they are considered charged. Flowrate boundary conditions were used to emulate both healthy and AF conditions. Results from numerical simulations coming form the first stage indicate that the device blocks particles of sizes larger than the inter-strut spacing. It was found that lateral strut space had the highest impact on efficacy. Based on the results of the second stage, deploying the electronegatively charged device in all three aortic arch arteries, the number of particles entering these arteries was reduced on average by 62.6% and 51.2%, for the healthy and diseased models respectively, matching or surpassing current oral anticoagulant efficacy. In conclusion, the device demonstrated a two-fold mechanism for filtering emboli: while the smallest particles are deflected by electrostatic repulsion, avoiding microembolisms, which could lead to cognitive impairment, the largest ones are mechanically filtered since they cannot fit in between the struts, effectively blocking the full range of particle sizes analyzed in this study. The device presented in this manuscript offers an anticoagulant-free method to prevent stroke and SBIs, imperative given the growing population of AF and elderly patients.

5.
medRxiv ; 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-38014278

RESUMEN

Purpose: TAVR has emerged as a standard approach for treating severe aortic stenosis patients. However, it is associated with several clinical complications, including subclinical leaflet thrombosis characterized by Hypoattenuated Leaflet Thickening (HALT). A rigorous analysis of TAVR device thrombogenicity considering anatomical variations is essential for estimating this risk. Clinicians use the Sinotubular Junction (STJ) diameter for TAVR sizing, but there is a paucity of research on its influence on TAVR devices thrombogenicity. Methods: A Medtronic Evolut® TAVR device was deployed in three patient models with varying STJ diameters (26, 30, and 34mm) to evaluate its impact on post-deployment hemodynamics and thrombogenicity, employing a novel computational framework combining prosthesis deployment and fluid- structure interaction analysis. Results: The 30 mm STJ patient case exhibited the best hemodynamic performance: 5.94 mmHg mean transvalvular pressure gradient (TPG), 2.64 cm 2 mean geometric orifice area (GOA), and the lowest mean residence time (T R ) - indicating a reduced thrombogenic risk; 26 mm STJ exhibited a 10 % reduction in GOA and a 35% increase in mean TPG compared to the 30 mm STJ; 34 mm STJ depicted hemodynamics comparable to the 30 mm STJ, but with a 6% increase in T R and elevated platelet stress accumulation. Conclusion: A smaller STJ size impairs adequate expansion of the TAVR stent, which may lead to suboptimal hemodynamic performance. Conversely, a larger STJ size marginally enhances the hemodynamic performance but increases the risk of TAVR leaflet thrombosis. Such analysis can aid pre- procedural planning and minimize the risk of TAVR leaflet thrombosis.

6.
Prog Neurobiol ; 231: 102540, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37898314

RESUMEN

How functional amyloids are regulated to restrict their activity is poorly understood. The cytoplasmic polyadenylation element-binding protein 3 (CPEB3) is an RNA-binding protein that adopts an amyloid state key for memory persistence. Its monomer represses the translation of synaptic target mRNAs while phase separated, whereas its aggregated state acts as a translational activator. Here, we have explored the sequence-driven molecular determinants behind the functional aggregation of human CPEB3 (hCPEB3). We found that the intrinsically disordered region (IDR) of hCPEB3 encodes both an amyloidogenic and a phase separation domain, separated by a poly-A-rich region. The hCPEB3 amyloid core is composed by a hydrophobic region instead of the Q-rich stretch found in the Drosophila orthologue. The hCPEB3 phase separation domain relies on hydrophobic interactions with ionic strength dependence, and its droplet ageing process leads to a liquid-to-solid transition with the formation of a non-fibril-based hydrogel surrounded by starburst droplets. Furthermore, we demonstrate the differential behavior of the protein depending on its environment. Under physiological-like conditions, hCPEB3 can establish additional electrostatic interactions with ions, increasing the stability of its liquid droplets and driving a condensation-based amyloid pathway.


Asunto(s)
Proteínas de Unión al ARN , Humanos , Amiloide/química , Amiloide/metabolismo , Proteínas de Unión al ARN/metabolismo , Separación de Fases
7.
Comput Methods Programs Biomed ; 242: 107818, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37837886

RESUMEN

BACKGROUND AND OBJECTIVES: Coronary obstruction is a complication that may affect patients receiving Transcatheter Aortic Valve Replacement (TAVR), with catastrophic consequences and long-term negative effects. To enable healthy coronary perfusion, it is fundamental to appropriately position the device with respect to the coronary ostia. Nonetheless, most TAVR delivery systems do not control commissural alignment to do so. Moreover, no in silico study has directly assessed the effect of commissural alignment on coronary perfusion. This work aims to evaluate the effect of TAVR commissural alignment on coronary perfusion and device performance. METHODS: A two-way computational fluid-structure interaction model is used to predict coronary perfusion at different commissural alignments. Moreover, in each scenario, hemodynamic biomarkers are evaluated to assess device performance. RESULTS: Commissural misalignment is shown to reduce the total coronary perfusion by -3.2% and the flow rate to a single coronary branch by -6.8%. It is also observed to impair valvular function by reducing the systolic geometric orifice area by -2.5% and increasing the systolic transvalvular pressure gradients by +5.3% and the diastolic leaflet stresses by +16.0%. CONCLUSIONS: The present TAVR patient model indicates that coronary perfusion, hemodynamic and structural performance are minimized when the prosthesis commissures are fully misaligned with the native ones. These results support the importance of enabling axial control in new TAVR delivery catheter systems and defining recommended values of commissural alignment in upcoming clinical treatment guidelines.


Asunto(s)
Estenosis de la Válvula Aórtica , Prótesis Valvulares Cardíacas , Reemplazo de la Válvula Aórtica Transcatéter , Humanos , Reemplazo de la Válvula Aórtica Transcatéter/métodos , Válvula Aórtica/cirugía , Estenosis de la Válvula Aórtica/cirugía , Hemodinámica , Resultado del Tratamiento , Diseño de Prótesis
8.
Chem Biodivers ; 20(10): e202300893, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37695827

RESUMEN

The cytotoxic activity of combinations of masticadienonic (AMD) or 3αOH-hydroxy-masticadienonic (3αOH-AMD) acids with cisplatin (CDDP) was evaluated against PC3 prostate and HCT116 colon cancer cell lines. Combinations A (half the IC50 value), B (IC50 value), and C (twice the IC50 value) were tested at a 1 : 1 ratio. All AMD plus CDDP combinations demonstrated increased cytotoxic effect, as determined by the sulforhodamine B test, in both cell types. The best combination was B, which showed 93 % and 91 % inhibition of the proliferation of PC3 and HCT116 cells, respectively. It also increased apoptosis in the PC3 cell lines, as evaluated by flow cytometry. However, in vivo tests showed no additional activity from the AMD plus CDDP combinations. These results showed that the increased cytotoxic activity of the combinations in vitro did not reflect in vivo tests. All combinations of 3αOH-AMD plus CDDP exerted antagonistic effects in both cell types.

11.
Sci Rep ; 13(1): 3395, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36854959

RESUMEN

Guayule (Parthenium argentatum Gray) is a semi-arid shrub, native from the Chihuahan desert. This plant produces polyisoprene and resin. Polyisoprene is the main focal point of many researches, from structure to properties. Today, some processes are used to extract polyisoprene under its dry form, using solvent extraction, to produce rubber (used in truck or airplane tires) or as an emulsion, to make latex products by dipping (used in medical gloves, condoms, etc.). This article focuses on guayule resin which has some interesting applications in adhesives, coatings, pharmaceuticals, etc. In order to better know the resin composition and to be able to perform comparisons between varieties or seasons, liquid and gas chromatographic analysis methods have been described, for the groups of molecules composing the resin (polyphenols, guayulins, free fatty acids, di and triacylglycerols, argentatins, alkanes, alkanals, sugars, organic acids). Unlike other articles, this study aims to analyze all components of the same resin; the average composition of a guayule resin is given.

12.
PLoS One ; 18(2): e0263639, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36780442

RESUMEN

The aim of this work was to analyze the influence of sex hormones and anatomical details (trabeculations and false tendons) on the electrophysiology of healthy human hearts. Additionally, sex- and anatomy-dependent effects of ventricular tachycardia (VT) inducibility are presented. To this end, four anatomically normal, human, biventricular geometries (two male, two female), with identifiable trabeculations, were obtained from high-resolution, ex-vivo MRI and represented by detailed and smoothed geometrical models (with and without the trabeculations). Additionally one model was augmented by a scar. The electrophysiology finite element model (FEM) simulations were carried out, using O'Hara-Rudy human myocyte model with sex phenotypes of Yang and Clancy. A systematic comparison between detailed vs smooth anatomies, male vs female normal hearts was carried out. The heart with a myocardial infarction was subjected to a programmed stimulus protocol to identify the effects of sex and anatomical detail on ventricular tachycardia inducibility. All female hearts presented QT-interval prolongation however the prolongation interval in comparison to the male phenotypes was anatomy-dependent and was not correlated to the size of the heart. Detailed geometries showed QRS fractionation and increased T-wave magnitude in comparison to the corresponding smoothed geometries. A variety of sustained VTs were obtained in the detailed and smoothed male geometries at different pacing locations, which provide evidence of the geometry-dependent differences regarding the prediction of the locations of reentry channels. In the female phenotype, sustained VTs were induced in both detailed and smooth geometries with RV apex pacing, however no consistent reentry channels were identified. Anatomical and physiological cardiac features play an important role defining risk in cardiac disease. These are often excluded from cardiac electrophysiology simulations. The assumption that the cardiac endocardium is smooth may produce inaccurate predictions towards the location of reentry channels in in-silico tachycardia inducibility studies.


Asunto(s)
Caracteres Sexuales , Taquicardia Ventricular , Femenino , Masculino , Humanos , Ventrículos Cardíacos , Corazón , Arritmias Cardíacas , Simulación por Computador , Estimulación Cardíaca Artificial , Electrocardiografía
13.
Angew Chem Int Ed Engl ; 62(19): e202209252, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-36542681

RESUMEN

Understanding early amyloidogenesis is key to rationally develop therapeutic strategies. Tau protein forms well-characterized pathological deposits but its aggregation mechanism is still poorly understood. Using single-molecule force spectroscopy based on a mechanical protection strategy, we studied the conformational landscape of the monomeric tau repeat domain (tau-RD244-368 ). We found two sets of conformational states, whose frequency is influenced by mutations and the chemical context. While pathological mutations Δ280K and P301L and a pro-amyloidogenic milieu favored expanded conformations and destabilized local structures, an anti-amyloidogenic environment promoted a compact ensemble, including a conformer whose topology might mask two amyloidogenic segments. Our results reveal that to initiate aggregation, monomeric tau-RD244-368 decreases its polymorphism adopting expanded conformations. This could account for the distinct structures found in vitro and across tauopathies.


Asunto(s)
Tauopatías , Proteínas tau , Humanos , Proteínas tau/metabolismo , Tauopatías/genética , Tauopatías/metabolismo , Tauopatías/patología , Conformación Molecular , Mutación
14.
Int J Numer Method Biomed Eng ; 38(12): e3649, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36106918

RESUMEN

This work intends to study the effect of aortic annulus eccentricity and leaflet rigidity on the performance, thrombogenic risk and calcification risk in bioprosthetic aortic valve replacements (BAVRs). To address these questions, a two-way immersed fluid-structure interaction (FSI) computational model was implemented in a high-performance computing (HPC) multi-physics simulation software, and validated against a well-known FSI benchmark. The aortic valve bioprosthesis model is qualitatively contrasted against experimental data, showing good agreement in closed and open states. Regarding the performance of BAVRs, the model predicts that increasing eccentricities yield lower geometric orifice areas (GOAs) and higher normalized transvalvular pressure gradients (TPGs) for healthy cardiac outputs during systole, agreeing with in vitro experiments. Regions with peak values of residence time are observed to grow with eccentricity in the sinus of Valsalva, indicating an elevated risk of thrombus formation for eccentric configurations. In addition, the computational model is used to analyze the effect of varying leaflet rigidity on both performance, thrombogenic and calcification risks with applications to tissue-engineered prostheses. For more rigid leaflets it predicts an increase in systolic and diastolic TPGs, and decrease in systolic GOA, which translates to decreased valve performance. The peak shear rate and residence time regions increase with leaflet rigidity, but their volume-averaged values were not significantly affected. Peak solid stresses are also analyzed, and observed to increase with rigidity, elevating risk of valve calcification and structural failure. To the authors' knowledge this is the first computational FSI model to study the effect of eccentricity or leaflet rigidity on thrombogenic biomarkers, providing a novel tool to aid device manufacturers and clinical practitioners.


Asunto(s)
Bioprótesis , Calcinosis , Prótesis Valvulares Cardíacas , Humanos , Válvula Aórtica/cirugía , Modelos Cardiovasculares , Simulación por Computador , Diseño de Prótesis
15.
Biomedicines ; 10(8)2022 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-36009394

RESUMEN

Quorum sensing (QS) and type III secretion systems (T3SSs) are among the most attractive anti-virulence targets for combating multidrug-resistant pathogenic bacteria. Some halogenated furanones reduce QS-associated virulence, but their role in T3SS inhibition remains unclear. This study aimed to assess the inhibition of these two systems on Pseudomonas aeruginosa virulence. The halogenated furanones (Z)-4-bromo-5-(bromomethylene)-2(5H) (C-30) and 5-(dibromomethylene)-2(5H) (named hereafter GBr) were synthesized, and their ability to inhibit the secretion of type III exoenzymes and QS-controlled virulence factors was analyzed in P. aeruginosa PA14 and two clinical isolates. Furthermore, their ability to prevent bacterial establishment was determined in a murine cutaneous abscess model. The GBr furanone reduced pyocyanin production, biofilm formation, and swarming motility in the same manner or more effectively than C-30. Moreover, both furanones inhibited the secretion of ExoS, ExoT, or ExoU effectors in all tested strains. The administration of GBr (25 and 50 µM) to CD1 mice infected with the PA14 strain significantly decreased necrosis formation in the inoculation zone and the systemic spread of bacteria more efficiently than C-30 (50 µM). Molecular docking analysis suggested that the gem position of bromine in GBr increases its affinity for the active site of the QS LasR regulator. Overall, our findings showed that the GBr furanone displayed efficient multi-target properties that may favor the development of more effective anti-virulence therapies.

16.
PLoS Comput Biol ; 18(6): e1010141, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35696442

RESUMEN

BACKGROUND: Left ventricular assist devices (LVADs) are implantable pumps that act as a life support therapy for patients with severe heart failure. Despite improving the survival rate, LVAD therapy can carry major complications. Particularly, the flow distortion introduced by the LVAD in the left ventricle (LV) may induce thrombus formation. While previous works have used numerical models to study the impact of multiple variables in the intra-LV stagnation regions, a comprehensive validation analysis has never been executed. The main goal of this work is to present a model of the LV-LVAD system and to design and follow a verification, validation and uncertainty quantification (VVUQ) plan based on the ASME V&V40 and V&V20 standards to ensure credible predictions. METHODS: The experiment used to validate the simulation is the SDSU cardiac simulator, a bench mock-up of the cardiovascular system that allows mimicking multiple operation conditions for the heart-LVAD system. The numerical model is based on Alya, the BSC's in-house platform for numerical modelling. Alya solves the Navier-Stokes equation with an Arbitrary Lagrangian-Eulerian (ALE) formulation in a deformable ventricle and includes pressure-driven valves, a 0D Windkessel model for the arterial output and a LVAD boundary condition modeled through a dynamic pressure-flow performance curve. The designed VVUQ plan involves: (a) a risk analysis and the associated credibility goals; (b) a verification stage to ensure correctness in the numerical solution procedure; (c) a sensitivity analysis to quantify the impact of the inputs on the four quantities of interest (QoIs) (average aortic root flow [Formula: see text], maximum aortic root flow [Formula: see text], average LVAD flow [Formula: see text], and maximum LVAD flow [Formula: see text]); (d) an uncertainty quantification using six validation experiments that include extreme operating conditions. RESULTS: Numerical code verification tests ensured correctness of the solution procedure and numerical calculation verification showed a grid convergence index (GCI)95% <3.3%. The total Sobol indices obtained during the sensitivity analysis demonstrated that the ejection fraction, the heart rate, and the pump performance curve coefficients are the most impactful inputs for the analysed QoIs. The Minkowski norm is used as validation metric for the uncertainty quantification. It shows that the midpoint cases have more accurate results when compared to the extreme cases. The total computational cost of the simulations was above 100 [core-years] executed in around three weeks time span in Marenostrum IV supercomputer. CONCLUSIONS: This work details a novel numerical model for the LV-LVAD system, that is supported by the design and execution of a VVUQ plan created following recognised international standards. We present a methodology demonstrating that stringent VVUQ according to ASME standards is feasible but computationally expensive.


Asunto(s)
Insuficiencia Cardíaca , Corazón Auxiliar , Simulación por Computador , Insuficiencia Cardíaca/cirugía , Ventrículos Cardíacos , Corazón Auxiliar/efectos adversos , Hemodinámica , Humanos , Incertidumbre
18.
BMC Cardiovasc Disord ; 22(1): 140, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35365075

RESUMEN

BACKGROUND: The life course accumulation of overt and subclinical myocardial dysfunction contributes to older age mortality, frailty, disability and loss of independence. The Medical Research Council National Survey of Health and Development (NSHD) is the world's longest running continued surveillance birth cohort providing a unique opportunity to understand life course determinants of myocardial dysfunction as part of MyoFit46-the cardiac sub-study of the NSHD. METHODS: We aim to recruit 550 NSHD participants of approximately 75 years+ to undertake high-density surface electrocardiographic imaging (ECGI) and stress perfusion cardiovascular magnetic resonance (CMR). Through comprehensive myocardial tissue characterization and 4-dimensional flow we hope to better understand the burden of clinical and subclinical cardiovascular disease. Supercomputers will be used to combine the multi-scale ECGI and CMR datasets per participant. Rarely available, prospectively collected whole-of-life data on exposures, traditional risk factors and multimorbidity will be studied to identify risk trajectories, critical change periods, mediators and cumulative impacts on the myocardium. DISCUSSION: By combining well curated, prospectively acquired longitudinal data of the NSHD with novel CMR-ECGI data and sharing these results and associated pipelines with the CMR community, MyoFit46 seeks to transform our understanding of how early, mid and later-life risk factor trajectories interact to determine the state of cardiovascular health in older age. TRIAL REGISTRATION: Prospectively registered on ClinicalTrials.gov with trial ID: 19/LO/1774 Multimorbidity Life-Course Approach to Myocardial Health- A Cardiac Sub-Study of the MCRC National Survey of Health and Development (NSHD).


Asunto(s)
Enfermedades Cardiovasculares , Imagen por Resonancia Magnética , Anciano , Enfermedades Cardiovasculares/diagnóstico por imagen , Enfermedades Cardiovasculares/epidemiología , Encuestas Epidemiológicas , Corazón , Humanos , Miocardio
19.
Molecules ; 27(4)2022 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-35209237

RESUMEN

Dendritic cells are antigen-presenting cells, which identify and process pathogens to subsequently activate specific T lymphocytes. To regulate the immune responses, DCs have to mature by the recognition of TLR ligands, TNFα or IFNγ. These ligands have been used as adjuvants to activate DCs in situ or in vitro, with toxic effects. It has been shown that some molecules affect the immune system, e.g., Masticadienonic acid (MDA) and 3α-hydroxy masticadienoic acid (3α-OH MDA) triterpenes naturally occurring in several medicinal plants, since they activate the nitric oxide synthase in macrophages and induce T lymphocyte proliferation. The DCs maturation induced by MDA or 3a-OH MDA was determined by incubating these cells with MDA or 3α-OH MDA, and their phenotype was afterwards analyzed. The results showed that only 3α-OH MDA was able to induce DCs maturation. When mice with melanoma were inoculated with DCs/3α-OH MDA, a decreased tumor growth rate was observed along with an extended cell death area within tumors compared to mice treated with DCs incubated with MDA. In conclusion, it is proposed that 3α-OH MDA may be an immunostimulant molecule. Conversely, it is proposed that MDA may be a molecule with anti-inflammatory properties.


Asunto(s)
Células Dendríticas/efectos de los fármacos , Células Dendríticas/inmunología , Factores Inmunológicos/química , Factores Inmunológicos/farmacología , Inmunomodulación/efectos de los fármacos , Triterpenos/química , Triterpenos/farmacología , Animales , Biomarcadores , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Dendríticas/metabolismo , Modelos Animales de Enfermedad , Inmunofenotipificación , Ratones , Estructura Molecular , Ensayos Antitumor por Modelo de Xenoinjerto
20.
J Cardiovasc Transl Res ; 15(2): 217-226, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-33624260

RESUMEN

Venous-arterial extracorporeal membrane oxygenation (VA-ECMO) treatment for acute cardiogenic shock in patients who also have acute lung injury predisposes development of a serious complication called "north-south syndrome" (NSS) which causes cerebral hypoxia. NSS is poorly characterized and hemodynamic studies have focused on cerebral perfusion ignoring the heart. We hypothesized in NSS the heart would be more likely to receive hypoxemic blood than the brain due to the proximity of the coronary arteries to the aortic annulus. To test this, we conducted a computational fluid dynamics simulation of blood flow in a human supported by VA-ECMO. Simulations quantified the fraction of blood at each aortic branching vessel originating from residual native cardiac output versus VA-ECMO. As residual cardiac function was increased, simulations demonstrated myocardial hypoxia would develop prior to cerebral hypoxia. These results illustrate the conditions where NSS will develop and the relative cardiac function that will lead to organ-specific hypoxia. Illustration of the impact of north-south syndrome on organ-specific oxygen delivery. Patients on VA-ECMO have two sources of blood flow, one from the VA-ECMO circuit and one from the residual cardiac function. When there is no residual cardiac function, all organs are perfused with oxygenated blood. As myocardial recovery progresses, blood supply from the two sources will begin to mix resulting in non-homogeneous mixing and differential oxygenation based upon the anatomical site of branching vessels.


Asunto(s)
Oxigenación por Membrana Extracorpórea , Insuficiencia Respiratoria , Arterias , Oxigenación por Membrana Extracorpórea/efectos adversos , Humanos , Pulmón , Insuficiencia Respiratoria/complicaciones , Choque Cardiogénico/diagnóstico , Choque Cardiogénico/etiología , Choque Cardiogénico/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA