Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Epigenetics Chromatin ; 14(1): 27, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34130715

RESUMEN

BACKGROUND: A critical question emerging in the field of developmental toxicology is whether alterations in chromatin structure induced by toxicant exposure control patterns of gene expression or, instead, are structural changes that are part of a nuclear stress response. Previously, we used a mouse model to conduct a three-way comparison between control offspring, alcohol-exposed but phenotypically normal animals, and alcohol-exposed offspring exhibiting craniofacial and central nervous system structural defects. In the cerebral cortex of animals exhibiting alcohol-induced dysgenesis, we identified a dramatic increase in the enrichment of dimethylated histone H3, lysine 9 (H3K9me2) within the regulatory regions of key developmental factors driving histogenesis in the brain. However, whether this change in chromatin structure is causally involved in the development of structural defects remains unknown. RESULTS: Deep-sequencing analysis of the cortex transcriptome reveals that the emergence of alcohol-induced structural defects correlates with disruptions in the genetic pathways controlling oxidative phosphorylation and mitochondrial function. The majority of the affected pathways are downstream targets of the mammalian target of rapamycin complex 2 (mTORC2), indicating that this stress-responsive complex plays a role in propagating the epigenetic memory of alcohol exposure through gestation. Importantly, transcriptional disruptions of the pathways regulating oxidative homeostasis correlate with the emergence of increased H3K9me2 across genic, repetitive, and non-transcribed regions of the genome. However, although associated with gene silencing, none of the candidate genes displaying increased H3K9me2 become transcriptionally repressed, nor do they exhibit increased markers of canonical heterochromatin. Similar to studies in C. elegans, disruptions in oxidative homeostasis induce the chromatin looping factor SATB2, but in mammals, this protein does not appear to drive increased H3K9me2 or altered patterns of gene expression. CONCLUSIONS: Our studies demonstrate that changes in H3K9me2 associate with alcohol-induced congenital defects, but that this epigenetic change does not correlate with transcriptional suppression. We speculate that the mobilization of SATB2 and increased enrichment of H3K9me2 may be components of a nuclear stress response that preserve chromatin integrity and interactions under prolonged oxidative stress. Further, we postulate that while this response may stabilize chromatin structure, it compromises the nuclear plasticity required for normal differentiation.


Asunto(s)
Etanol/toxicidad , Histonas , Fosforilación Oxidativa , Efectos Tardíos de la Exposición Prenatal , Animales , Femenino , Histonas/metabolismo , Ratones , Mitocondrias/metabolismo , Embarazo , Efectos Tardíos de la Exposición Prenatal/genética , Transcriptoma
2.
Leukemia ; 34(12): 3269-3285, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32576962

RESUMEN

Somatic mutations affecting CREBBP and EP300 are a hallmark of diffuse large B-cell lymphoma (DLBCL). These mutations are frequently monoallelic, within the histone acetyltransferase (HAT) domain and usually mutually exclusive, suggesting that they might affect a common pathway, and their residual WT expression is required for cell survival. Using in vitro and in vivo models, we found that inhibition of CARM1 activity (CARM1i) slows DLBCL growth, and that the levels of sensitivity are positively correlated with the CREBBP/EP300 mutation load. Conversely, treatment of DLBCLs that do not have CREBBP/EP300 mutations with CARM1i and a CBP/p300 inhibitor revealed a strong synergistic effect. Our mechanistic data show that CARM1i further reduces the HAT activity of CBP genome wide and downregulates CBP-target genes in DLBCL cells, resulting in a synthetic lethality that leverages the mutational status of CREBBP/EP300 as a biomarker for the use of small-molecule inhibitors of CARM1 in DLBCL and other cancers.


Asunto(s)
Proteína de Unión a CREB/genética , Proteína p300 Asociada a E1A/genética , Histona Acetiltransferasas/metabolismo , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/metabolismo , Proteína-Arginina N-Metiltransferasas/antagonistas & inhibidores , Mutaciones Letales Sintéticas/genética , Acetilación/efectos de los fármacos , Animales , Línea Celular , Regulación hacia Abajo/genética , Ratones , Ratones Endogámicos NOD , Ratones SCID
3.
Proc Natl Acad Sci U S A ; 115(43): E10137-E10146, 2018 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-30297393

RESUMEN

The bone is essential for locomotion, calcium storage, and harboring the hematopoietic stem cells (HSCs) that supply the body with mature blood cells throughout life. HSCs reside at the interface of the bone and bone marrow (BM), where active bone remodeling takes place. Although the cellular components of the BM niche have been characterized, little is known about its epigenetic regulation. Here we find that the histone methylation regulator PTIP (Pax interaction with transcription-activation domain protein-1) is required to maintain the integrity of the BM niche by promoting osteoclast differentiation. PTIP directly promotes chromatin changes required for the expression of Pparγ (peroxisome proliferator-activated receptor-γ), a transcription factor essential for osteoclastogenesis. PTIP deletion leads to a drastic reduction of HSCs in the BM and induces extramedullary hematopoiesis. Furthermore, exposure of acute myeloid leukemia cells to a PTIP-deficient BM microenvironment leads to a reduction in leukemia-initiating cells and increased survival upon transplantation. Taken together, our data identify PTIP as an epigenetic regulator of osteoclastogenesis that is required for the integrity of the BM niche to sustain both normal hematopoiesis and leukemia.


Asunto(s)
Médula Ósea/metabolismo , Proteínas Portadoras/metabolismo , Histonas/metabolismo , Leucemia/metabolismo , Proteínas Nucleares/metabolismo , Nicho de Células Madre/fisiología , Animales , Células de la Médula Ósea/metabolismo , Huesos/metabolismo , Diferenciación Celular/fisiología , Proteínas de Unión al ADN , Epigénesis Genética/fisiología , Hematopoyesis/fisiología , Células Madre Hematopoyéticas/metabolismo , Metilación , Ratones , Osteoclastos/metabolismo , Osteogénesis/fisiología , PPAR gamma/metabolismo
4.
Alcohol ; 60: 121-133, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28433419

RESUMEN

Alterations to chromatin structure induced by environmental insults have become an attractive explanation for the persistence of exposure effects into subsequent life stages. However, a growing body of work examining the epigenetic impact that alcohol and other drugs of abuse exert consistently notes a disconnection between induced changes in chromatin structure and patterns of gene transcription. Thus, an important question is whether perturbations in the 'histone code' induced by prenatal exposures to alcohol implicitly subvert gene expression, or whether the hierarchy of cellular signaling networks driving development is such that they retain control over the transcriptional program. To address this question, we examined the impact of ethanol exposure in mouse embryonic stem cells cultured under 2i conditions, where the transcriptional program is rigidly enforced through the use of small molecule inhibitors. We find that ethanol-induced changes in post-translational histone modifications are dose-dependent, unique to the chromatin modification under investigation, and that the extent and direction of the change differ between the period of exposure and the recovery phase. Similar to in vivo models, we find post-translational modifications affecting histone 3 lysine 9 are the most profoundly impacted, with the signature of exposure persisting long after alcohol has been removed. These changes in chromatin structure associate with dose-dependent alterations in the levels of transcripts encoding Dnmt1, Uhrf1, Tet1, Tet2, Tet3, and Polycomb complex members Eed and Ezh2. However, in this model, ethanol-induced changes to the chromatin template do not consistently associate with changes in gene transcription, impede the process of differentiation, or affect the acquisition of monoallelic patterns of expression for the imprinted gene Igf2R. These findings question the inferred universal relevance of epigenetic changes induced by drugs of abuse and suggest that changes in chromatin structure cannot unequivocally explain dysgenesis in isolation.


Asunto(s)
Ensamble y Desensamble de Cromatina/efectos de los fármacos , Etanol/toxicidad , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Células Madre Embrionarias de Ratones/efectos de los fármacos , Transcripción Genética/efectos de los fármacos , Animales , Células Cultivadas , Relación Dosis-Respuesta a Droga , Femenino , Trastornos del Espectro Alcohólico Fetal/genética , Trastornos del Espectro Alcohólico Fetal/metabolismo , Trastornos del Espectro Alcohólico Fetal/patología , Impresión Genómica/efectos de los fármacos , Histonas/genética , Histonas/metabolismo , Lisina , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Células Madre Embrionarias de Ratones/patología , Conformación de Ácido Nucleico , Embarazo , Efectos Tardíos de la Exposición Prenatal , Conformación Proteica , Relación Estructura-Actividad , Factores de Tiempo
5.
Artículo en Inglés | MEDLINE | ID: mdl-26421061

RESUMEN

BACKGROUND: In recent years, we have come to recognize that a multitude of in utero exposures have the capacity to induce the development of congenital and metabolic defects. As most of these encounters manifest their effects beyond the window of exposure, deciphering the mechanisms of teratogenesis is incredibly difficult. For many agents, altered epigenetic programming has become suspect in transmitting the lasting signature of exposure leading to dysgenesis. However, while several chemicals can perturb chromatin structure acutely, for many agents (particularly alcohol) it remains unclear if these modifications represent transient responses to exposure or heritable lesions leading to pathology. RESULTS: Here, we report that mice encountering an acute exposure to alcohol on gestational Day-7 exhibit significant alterations in chromatin structure (histone 3 lysine 9 dimethylation, lysine 9 acetylation, and lysine 27 trimethylation) at Day-17, and that these changes strongly correlate with the development of craniofacial and central nervous system defects. Using a neural cortical stem cell model, we find that the epigenetic changes arising as a consequence of alcohol exposure are heavily dependent on the gene under investigation, the dose of alcohol encountered, and that the signatures arising acutely differ significantly from those observed after a 4-day recovery period. Importantly, the changes observed post-recovery are consistent with those modeled in vivo, and associate with alterations in transcripts encoding multiple homeobox genes directing neurogenesis. Unexpectedly, we do not observe a correlation between alcohol-induced changes in chromatin structure and alterations in transcription. Interestingly, the majority of epigenetic changes observed occur in marks associated with repressive chromatin structure, and we identify correlative disruptions in transcripts encoding Dnmt1, Eed, Ehmt2 (G9a), EzH2, Kdm1a, Kdm4c, Setdb1, Sod3, Tet1 and Uhrf1. CONCLUSIONS: These observations suggest that the immediate and long-term impacts of alcohol exposure on chromatin structure are distinct, and hint at the existence of a possible coordinated epigenetic response to ethanol during development. Collectively, our results indicate that alcohol-induced modifications to chromatin structure persist beyond the window of exposure, and likely contribute to the development of fetal alcohol syndrome-associated congenital abnormalities.

6.
Theriogenology ; 84(8): 1411-22, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26279314

RESUMEN

Transcripts derived from select clades of transposable elements are among the first to appear in early mouse and human embryos, indicating transposable elements and the mechanisms that regulate their activity are fundamental to the establishment of the founding mammalian lineages. However, the mechanisms by which these parasitic sequences are involved in directing the developmental program are still poorly characterized. Transposable elements are regulated through epigenetic means, where combinatorial patterns of DNA methylation and histone 3 lysine 9 trimethylation (H3K9me3) suppress their transcription. From studies in rodents, SET domain bifurcated 1 (SETDB1) has emerged as the core methyltransferase responsible for marking transposable elements with H3K9me3 and temporally regulating their transcriptional activity. SETDB1 loss of function studies in mice reveal that although extraembryonic tissues do not require this methyltransferase, establishment of the embryo proper fails without it. As the bovine embryo initiates the processes of epigenetic programming earlier in the preimplantation phase, we sought to determine whether suppressing SETDB1 would block the formation of the inner cell mass. We report here that bovine SETDB1 transcripts are present throughout preimplantation development, and RNA interference-based depletion blocks embryo growth at the morula stage of development. Although we did not observe alterations in global histone methylation or transposable element transcription, we did observe increased global levels of H3K27 acetylation, an epigenetic mark associated with active enhancers. Our observations suggest that SETDB1 might interact with the epigenetic machinery controlling enhancer function and that suppression of this methyltransferase may disrupt the bovine developmental program.


Asunto(s)
Blastocisto/enzimología , Bovinos/embriología , Desarrollo Embrionario/genética , N-Metiltransferasa de Histona-Lisina/fisiología , Acetilación , Animales , Regulación del Desarrollo de la Expresión Génica , Código de Histonas , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Interferencia de ARN
7.
Alcohol Res ; 35(1): 77-85, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24313167

RESUMEN

Exposure to alcohol significantly alters the developmental trajectory of progenitor cells and fundamentally compromises tissue formation (i.e., histogenesis). Emerging research suggests that ethanol can impair mammalian development by interfering with the execution of molecular programs governing differentiation. For example, ethanol exposure disrupts cellular migration, changes cell-cell interactions, and alters growth factor signaling pathways. Additionally, ethanol can alter epigenetic mechanisms controlling gene expression. Normally, lineage-specific regulatory factors (i.e., transcription factors) establish the transcriptional networks of each new cell type; the cell's identity then is maintained through epigenetic alterations in the way in which the DNA encoding each gene becomes packaged within the chromatin. Ethanol exposure can induce epigenetic changes that do not induce genetic mutations but nonetheless alter the course of fetal development and result in a large array of patterning defects. Two crucial enzyme complexes--the Polycomb and Trithorax proteins--are central to the epigenetic programs controlling the intricate balance between self-renewal and the execution of cellular differentiation, with diametrically opposed functions. Prenatal ethanol exposure may disrupt the functions of these two enzyme complexes, altering a crucial aspect of mammalian differentiation. Characterizing the involvement of Polycomb and Trithorax group complexes in the etiology of fetal alcohol spectrum disorders will undoubtedly enhance understanding of the role that epigenetic programming plays in this complex disorder.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Depresores del Sistema Nervioso Central/efectos adversos , Etanol/efectos adversos , Trastornos del Espectro Alcohólico Fetal/genética , Proteína de la Leucemia Mieloide-Linfoide/fisiología , Proteínas del Grupo Polycomb/fisiología , Animales , Diferenciación Celular/genética , Epigénesis Genética/efectos de los fármacos , Femenino , Trastornos del Espectro Alcohólico Fetal/metabolismo , Humanos , Complejos Multiproteicos/fisiología , Embarazo , Efectos Tardíos de la Exposición Prenatal/genética , Efectos Tardíos de la Exposición Prenatal/metabolismo
8.
Alcohol Clin Exp Res ; 37(7): 1111-22, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23488822

RESUMEN

BACKGROUND: From studies using a diverse range of model organisms, we now acknowledge that epigenetic changes to chromatin structure provide a plausible link between environmental teratogens and alterations in gene expression leading to disease. Observations from a number of independent laboratories indicate that ethanol (EtOH) has the capacity to act as a powerful epigenetic disruptor and potentially derail the coordinated processes of cellular differentiation. In this study, we sought to examine whether primary neurospheres cultured under conditions maintaining stemness were susceptible to alcohol-induced alterations in the histone code. We focused our studies on trimethylated histone 3 lysine 4 and trimethylated histone 3 lysine 27, as these are 2 of the most prominent posttranslational histone modifications regulating stem cell maintenance and neural differentiation. METHODS: Primary neurosphere cultures were maintained under conditions promoting the stem cell state and treated with EtOH for 5 days. Control and EtOH-treated cellular extracts were examined using a combination of quantitative RT-PCR and chromatin immunoprecipitation techniques. RESULTS: We find that the regulatory regions of genes controlling both neural precursor cell identity and processes of differentiation exhibited significant declines in the enrichment of the chromatin marks examined. Despite these widespread changes in chromatin structure, only a small subset of genes including Dlx2, Fabp7, Nestin, Olig2, and Pax6 displayed EtOH-induced alterations in transcription. Unexpectedly, the majority of chromatin-modifying enzymes examined including members of the Polycomb Repressive Complex displayed minimal changes in expression and localization. Only transcripts encoding Dnmt1, Uhrf1, Ehmt1, Ash2 l, Wdr5, and Kdm1b exhibited significant differences. CONCLUSIONS: Our results indicate that primary neurospheres maintained as stem cells in vitro are susceptible to alcohol-induced perturbation of the histone code and errors in the epigenetic program. These observations indicate that alterations to chromatin structure may represent a crucial component of alcohol teratogenesis and progress toward a better understanding of the developmental origins of fetal alcohol spectrum disorders.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Epigénesis Genética/efectos de los fármacos , Etanol/toxicidad , Regulación del Desarrollo de la Expresión Génica , Células-Madre Neurales/efectos de los fármacos , Animales , Diferenciación Celular/fisiología , Células Cultivadas , Corteza Cerebral/citología , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/fisiología , Epigénesis Genética/fisiología , Femenino , Ratones , Ratones Endogámicos C57BL , Células-Madre Neurales/fisiología , Embarazo
9.
Alcohol ; 47(2): 109-20, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23317542

RESUMEN

Identification of the transcriptional networks disrupted by prenatal ethanol exposure remains a core requirement to better understanding the molecular mechanisms of alcohol-induced teratogenesis. In this regard, quantitative reverse-transcriptase polymerase chain reaction (qPCR) has emerged as an essential technique in our efforts to characterize alterations in gene expression brought on by exposure to alcohol. However, many publications continue to report the utilization of inappropriate methods of qPCR normalization, and for many in vitro models, no consistent set of empirically tested normalization controls have been identified. In the present study, we sought to identify a group of candidate reference genes for use within studies of alcohol exposed embryonic, placental, and neurosphere stem cells under both conditions maintaining stemness as well as throughout in vitro differentiation. To this end, we surveyed the recent literature and compiled a short list of fourteen candidate genes commonly used as normalization controls in qPCR studies of gene expression. This list included: Actb, B2m, Gapdh, Gusb, H2afz, Hk2, Hmbs, Hprt, Mrpl1, Pgk1, Ppia, Sdha, Tbp, and Ywhaz. From these studies, we find no single candidate gene was consistently refractory to the influence of alcohol nor completely stable throughout in vitro differentiation. Accordingly, we propose normalizing qPCR measurements to the geometric mean C(T) values obtained for three independent reference mRNAs as a reliable method to accurately interpret qPCR data and assess alterations in gene expression within alcohol treated cultures. Highlighting the importance of careful and empirical reference gene selection, the commonly used reference gene Actb was often amongst the least stable candidate genes tested. In fact, it would not serve as a valid normalization control in many cases. Data presented here will aid in the design of future experiments using stem cells to study the transcriptional processes driving differentiation, and model the developmental impact of teratogens.


Asunto(s)
Células Madre Embrionarias/efectos de los fármacos , Etanol/efectos adversos , Expresión Génica/efectos de los fármacos , Células-Madre Neurales/efectos de los fármacos , Placenta/citología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Anomalías Inducidas por Medicamentos , Animales , Diferenciación Celular/genética , Células Cultivadas , Femenino , Marcadores Genéticos/efectos de los fármacos , Intercambio Materno-Fetal , Ratones , Ratones Endogámicos C57BL , Embarazo , ARN Mensajero/análisis , Células Madre/efectos de los fármacos
10.
PLoS One ; 6(11): e27592, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22102912

RESUMEN

Isolation and culture of both embryonic and tissue specific stem cells provide an enormous opportunity to study the molecular processes driving development. To gain insight into the initial events underpinning mammalian embryogenesis, pluripotent stem cells from each of the three distinct lineages present within the preimplantation blastocyst have been derived. Embryonic (ES), trophectoderm (TS) and extraembryonic endoderm (XEN) stem cells possess the developmental potential of their founding lineages and seemingly utilize distinct epigenetic modalities to program gene expression. However, the basis for these differing cellular identities and epigenetic properties remain poorly defined.Quantitative reverse transcription-polymerase chain reaction (qPCR) is a powerful and efficient means of rapidly comparing patterns of gene expression between different developmental stages and experimental conditions. However, careful, empirical selection of appropriate reference genes is essential to accurately measuring transcriptional differences. Here we report the quantitation and evaluation of fourteen commonly used references genes between ES, TS and XEN stem cells. These included: Actb, B2m, Hsp70, Gapdh, Gusb, H2afz, Hk2, Hprt, Pgk1, Ppia, Rn7sk, Sdha, Tbp and Ywhaz. Utilizing three independent statistical analysis, we identify Pgk1, Sdha and Tbp as the most stable reference genes between each of these stem cell types. Furthermore, we identify Sdha, Tbp and Ywhaz as well as Ywhaz, Pgk1 and Hk2 as the three most stable reference genes through the in vitro differentiation of embryonic and trophectoderm stem cells respectively.Understanding the transcriptional and epigenetic regulatory mechanisms controlling cellular identity within these distinct stem cell types provides essential insight into cellular processes controlling both embryogenesis and stem cell biology. Normalizing quantitative RT-PCR measurements using the geometric mean CT values obtained for the identified mRNAs, offers a reliable method to assess differing patterns of gene expression between the three founding stem cell lineages present within the mammalian preimplantation embryo.


Asunto(s)
Biomarcadores/metabolismo , Células Madre Embrionarias/citología , Genes/fisiología , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Células Madre/citología , Animales , Blastocisto/citología , Diferenciación Celular , Linaje de la Célula , Células Madre Embrionarias/fisiología , Endodermo/citología , Regulación del Desarrollo de la Expresión Génica , Ratones , Células Madre/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...